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Abstract

Gradient descent and other first-order methods have been extensively used in deep learn-

ing. They can find solutions with not only low training error, but also low test error. This

motivates the study of the implicit bias of training algorithms such as gradient descent,

meaning we want to understand what special properties are satisfied by gradient descent

solutions that lead to good generalization. In this thesis, we focus on gradient descent and

its derivatives, show test error bounds and characterize the implicit biases.

In detail, for linear classifiers, we consider both the separable setting and nonseparable

setting. In the separable case, we first give an 1/t test error bound for stochastic gradient

descent. Then for gradient descent, we present a primal-dual framework to analyze its

implicit bias, which leads to fast margin maximization algorithms. While the previous

results mostly require exponentially-tailed losses, we also show that for general decreasing

losses, the implicit bias can still be characterized in terms of the regularization path. In the

nonseparable case, we design a nearly-optimal algorithm by combining logistic regression

and perceptron. We also characterize the implicit bias of gradient descent via a unique

decomposition of the training set.

For neural networks, we first provide test error bounds for shallow ReLU networks, using

the recent idea of neural tangent kernel, but only requiring a mild overparameterization.

Then we show implicit bias results for deep linear networks and deep homogeneous networks,

in the form of alignment properties.
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Chapter 1: Introduction

In recent years, deep learning has achieved great empirical success in many areas, such as

computer vision (e.g., ResNet [1]), natural language processing (e.g., Transformer [2]), and

deep reinforcement learning (e.g., AlphaGo [3]). However, there are still fundamental ques-

tions not fully answered: why are optimization and generalization feasible in deep learning?

To give some background, we first introduce the notions of optimization and generaliza-

tion on a simple but typical setting in machine learning: suppose we have a training set

{(xi, yi)}ni=1 where each xi represents an image of either a table or chair, and yi ∈ {−1,+1}
represents the label where −1 denotes a table and +1 denotes a chair. Now the high-level

goal of machine learning is to learn useful patterns from the training set, which further

consists of optimization and generalization. The problem of optimization means that we

want to train a model or function f , such that for most training examples, it holds that

f(xi) = yi. On the other hand, we also need to consider generalization, meaning we also

want our model to make good predictions on some unseen data. For example, if we train a

model on a training set of tables and chairs, we also want our model to be able to distinguish

tables from chairs on some future inputs.

Optimization is well-understood for convex objective functions; on the other hand, there

exists a simple nonconvex function that requires exponential time to optimize [4, Theorem

1.1.2]. In deep learning, the training objective is usually highly nonconvex, but gradient-

based algorithms such as stochastic gradient descent (SGD) [5] and Adam [6] can usually

still obtain a high training accuracy despite nonconvexity. In recent years, a lot of progress

has been made to explain the feasibility of training in deep learning, but these prior results

also have different kinds of limitation, and a deeper analysis is still required.

Generalization for neural networks has also been studied for a long time. However, recently

people have noticed that existing results are not enough to explain practical success of deep

networks. For example, a classical tool to analyze generalization is the VC-dimension, which

has also been applied to neural networks [7]. Specifically, if the network can only represent

a limited number of sign patterns, then the VC-dimension analysis can rigorously ensure

good generalization. However, it has been found in practice that neural networks can even

fit random signs [8], suggesting that the VC theory may not be enough to explain the strong

generalization performance of neural networks in practice, and thus a more fine-grained

analysis is needed.

In this thesis, we try to answer the above questions by analyzing optimization and general-

ization simultaneously. The motivation is that, certain training algorithms such as SGD can
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usually find a solution that can not only fit the training data, but also have good generaliza-

tion [8]. Motivated by this, we try to study the implicit bias of training algorithms including

SGD, i.e., to characterize some special properties of the SGD solution, which may further be

used to prove good generalization bounds and make the model more interpretable. On the

other hand, as we will see below, the study of implicit bias also leads to finer optimization

analyses, which can be useful in understanding the feasibility of training in deep learning.

In the remaining parts of the introduction, we first introduce the problem setup and some

common notation, and then give a summary of our results that will be discussed in this

thesis. Detailed theorem statements and proofs, along with comparisons with many related

works, will be given in following sections.

1.1 NOTATION AND PROBLEM SETUP

In this section, we first introduce some general notation that will be used throughout this

thesis, then give a formal description of the problem setup.

Let 1A denote the indicator of an event A, i.e., 1A = 1 when A happens, and 1A = 0

when A does not happen. Given a convex set C, let ιC denote the indicator function, i.e.,

ιC(x) = 0 if x ∈ C, and ιC(x) =∞ if x 6∈ C.

A real-valued differentiable function f is called β-smooth with respect to norm ‖ · ‖ if its

gradient is β-Lipschitz continuous with respect to norm ‖ · ‖; formally, for any x, x′ in its

domain, we have
∥∥∇f(x)−∇f(x′)

∥∥
∗ ≤ β‖x−x′‖, where ‖ ·‖∗ denotes the dual norm of ‖ ·‖.

In particular, this implies [9, Lemma 3.4]∣∣∣f(x′)− f(x)−
〈
∇f(x), x′ − x

〉∣∣∣ ≤ β

2
‖x− x′‖2.

Next we give the problem setup. In this thesis, we consider a binary classification problem,

as described below. Without loss of generality, we suppose the inputs or feature vectors are

from Rd, while the label is either −1 or +1, denoting two classes. For example, each input

may be an image of a table or chair, and if the input is a table, its label is −1, otherwise its

label is +1. In the following, we often deal with a training set {(xi, yi)}ni=1 which consists of

n training examples, and we assume they are identically and independently sampled from

an underlying data distribution P over Rd × {−1,+1}. Informally, our goal is to learn a

model or function based on the training set, which can map the input feature vector to the

correct label as much as possible, on both the training set and the distribution P . Below we

give a formal description of this problem.

The model will be denoted by a real-valued function f(x;w) in general, where x denotes the
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input feature vector and w denotes the weight or parameter vector. Given a feature vector

x, to make a prediction, we simply use the sign of the output of the model sign
(
f(x;w)

)
. In

this thesis, we will consider either a linear classifier flin(x;w) := 〈w, x〉, or a neural network

as described below. An L-layer neural network consists of the following parts: (i) L weight

matrices WL, . . . ,W1, where Wk ∈ Rdk×dk−1 ; (ii) L bias vectors bL, . . . , b1, where bk ∈ Rdk ;

(iii) an activation function σ : R → R. Given an input x ∈ Rd0 , let x0 := 0, then for each

1 ≤ k ≤ L − 1, the neural network computes xk := σ(Wkxk−1 + bk), where σ is applied to

each coordinate. The final output is given by WLxL−1 + bL. The network defined above can

be described compactly as below:

fnn(x;w) := WLσ
(
WL−1σ

(
· · ·σ(W1x+ b1) · · ·

)
+ bL−1

)
+ bL,

where w includes all parameters W1, . . . ,WL, b1, . . . , bL.

We will focus on the risk minimization framework. Given a decreasing loss function

` : R→ R, the population risk and empirical risk of w are given by

R(w) := E(x,y)∼P

[
`
(
yf(x;w)

)]
, and R̂(w) :=

1

n

n∑
i=1

`
(
yif(xi;w)

)
. (1.1)

The following quantities will also be useful in our analysis:

Q(w) := E(x,y)∼P

[
−`′

(
yf(x;w)

)]
, and Q̂(w) :=

1

n

n∑
i=1

−`′
(
yif(xi;w)

)
, (1.2)

where `′ denotes the derivative of `. The problem of optimization is usually just to minimize

R̂; note that since ` is decreasing, by minimizing R̂, we effectively try to force yi and f(xi)

to have the same sign. On the other hand, to show that our model also generalizes well, we

will prove upper bounds on R.

Here are some examples of decreasing loss functions:

• The logistic loss `log(z) := ln(1 + e−z): widely-used in practice.

• The hinge loss `h(z) := max{−z + 1, 0}: also widely-used in practice.

• The exponential loss `exp(z) := e−z: this one is rarely used in practice, but it will allow

for a clean implicit-bias analysis.

• The ReLU loss `r(z) := max{−z, 0}: this one is sometimes also called the hinge loss; we

call it the ReLU loss to distinguish it from the previous one. Note that with the ReLU
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loss, 0 is a global minimizer of the risk function, and it may seem that no optimization

is needed. However, by letting `′r(0) = −1 (cf. Section 2.1) or by choosing a special

domain (cf. Section 3.1), we can also obtain efficient algorithms with the ReLU loss.

Moreover, let `0−1(z) := 1z≤0 denote the zero-one loss, we will often try to derive bounds on

the population zero-one risk, or test misclassification error

R0−1(w) := E(x,y)∼P

[
`0−1

(
yf(x;w)

)]
= Pr(x,y)∼P

(
y 6= sign

(
f(x;w)

))
.

The most basic algorithms we will study are gradient descent (GD) and stochastic gradient

descent (SGD). For both algorithms, we start from some properly-chosen initialization w0.

For GD, we will work with a training set and the corresponding empirical risk, and let

wt+1 := ΠD

[
wt − ηt∇R̂(wt)

]
,

where ηt is the learning rate or step size at step t, and D is the domain of optimization. In

most cases in this thesis, we simply let D = Rd (i.e., no projection), but in certain cases a

carefully-chosen D can allow for an efficient algorithm (cf. Section 3.1). For GD, we can

either prove a bound on the empirical risk R̂(wt), or study if the GD iterates wt converge

to a global minimizer, or even prove a test misclassification error bound R0−1(wt) using a

generalization analysis. For SGD, we sample a new data example (xt, yt) at step t, and let

wt+1 := ΠD

[
wt − ηt`′

(
ytf(xt;wt)

)
∇wf(xt;wt)

]
.

We usually directly prove a test error bound R0−1(wt) for SGD. Based on our understand-

ing of GD and SGD, we will also design more efficient algorithms in different settings (cf.

Sections 2.3 and 3.1).

Sometimes we also consider gradient flow, defined as a solution to the differential equation

dwt
dt

= −∇R̂(wt).

In other words, gradient flow can be viewed as gradient descent with infinitesimal learning

rates. A gradient flow may not exist if R̂ is not smooth enough, but in this thesis we will

not spend too much effort on such technical details; instead, we use gradient flow mainly to

simplify the analysis and highlight the key proof ideas, particularly when dealing with deep

networks. Moreover, many of our results can also be extended to the gradient descent case

with sufficiently small learning rates.
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1.2 SUMMARY OF RESULTS

In this section, we give a brief summary of the results that will be covered in this thesis.

We will consider both linear classifiers and neural networks, and try to show test error

bounds and characterize implicit biases.

1.2.1 Linear classifiers

For simplicity, we start our analysis from linear classifiers: the input x is mapped to 〈w, x〉,
where w denotes the weight vector. Linear classifiers have been studied for a long time, but

we still provide some novel results and analyses as detailed below; moreover, these ideas can

also be useful when analyzing neural networks.

Roughly speaking, we will consider two cases: the separable case and nonseparable case.

We discuss them separately below.

Separable case. The separability assumption can be made on either the training set or the

data distribution P . Given a training set {(xi, yi)}ni=1, separability means that there exists

a linear classifier u such that yi〈u, xi〉 > 0 for all 1 ≤ i ≤ n. In other words, there exists

a ground-truth solution that can give the correct label on all training examples. Similarly,

given the underlying data distribution P , we can assume a stronger separability condition:

there exists u such that for almost all (x, y) ∼ P , it holds that y〈u, x〉 > 0. In this thesis,

we will give test error bounds under the distributional separability assumption, and further

give finer characterizations of the implicit bias of GD with a separable training set.

A central notion in the analysis of separable case is margin: with a separable training

set, given a ground-truth solution u, its margin γ is given by γ := min1≤i≤n yi〈u, xi〉 > 0.

Similarly, in the distributional setting, the exact separability assumption we will make also

includes a concrete margin: there exists u and γ > 0 such that y〈u, x〉 ≥ γ almost surely.

Intuitively, after a proper normalization (e.g., after ensuring ‖u‖2 = 1), the larger the margin

is, the easier the problem is; indeed, margin has been used in the design and analysis of many

machine learning algorithms, such as Perceptron [10], SVM [11], Boosting [12], and neural

networks [13].

Chapter 2 focuses on linear classifiers under the separable case. First, if the data distribu-

tion P can be separated with margin γ, Theorem 2.1 proves an Õ
(

1
γ2t

)
test misclassification

error bound for SGD with the logistic loss, based on results from [14]. The analysis can han-

dle constant learning rate, thus giving the Õ(1/t) test error bound. The only prior Õ(1/t)

rate requires strong convexity [15], which unfortunately does not hold in our setting: the rea-
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son is that we consider an unbounded domain Rd on which the risk function is not strongly

convex, since we use the logistic loss which is not strongly convex on R.

On the other hand, if we focus on a linearly separable training set, we can provide finer

characterizations of the implicit bias of GD: more exactly, we want to know what properties

are satisfied by GD solutions that lead to good generalization, and if possible, we also want

to characterize the limit of the GD iterates. Previously, [16] proved that GD with the

logistic loss converges to the `2 maximum-margin solution. In a parallel work [17], we also

show margin maximization using a different proof technique based on [18]. However, these

prior results do not give the fastest possible rate. In Section 2.2, we develop a primal-dual

framework to analyze the implicit bias based on [19]: we show that GD on the original

problem induces a mirror descent update on a dual problem, whose optimum is exactly

given by the maximum margin, thus giving a natural interpretation of the implicit bias

phenomenon. This framework also allows us to give faster analyses and algorithms for the

following margin maximization problem:

max
‖w‖2≤1

min
1≤i≤n

yi〈w, xi〉. (1.3)

First of all, we show a fast O(1/t) margin maximization rate for GD (cf. Theorem 2.3).

Furthermore, motivated by the primal-dual framework, we design a momentum-style margin

maximization algorithm that has an even faster Õ(1/t2) rate (cf. Theorem 2.5), which is

based on [20]. Prior first-order methods mostly have rate O(1/
√
t); for example, we can apply

gradient ascent to eq. (1.3) (we use ascent since we need to maximize a concave function);

this is the batch perceptron algorithm [21], and its rate is O(1/
√
t). On the other hand,

we may also apply the ellipsoid method to eq. (1.3); to ensure an additive error of ε, the

ellipsoid method needs O(d2 ln(1/ε)) iterations, while our momentum-style method needs

O(1/
√
ε) iterations. Therefore, for ε ≥ 1/poly(d), our method is faster. More related work

is discussed in Section 2.2.

The above implicit bias results all require a loss function with an exponential tail (e.g.,

the exponential loss or logistic loss); in Section 2.4, we further show that even for general

decreasing losses, the implicit bias of GD can be characterized in terms of the regularization

path (cf. Theorems 2.7 and 2.8). This section is based on [22].

Nonseparable case. Next we consider a general nonseparable setting.

In the distributional setting, we assume the optimal test misclassification error that can

be obtained by linear classifiers is given by OPT > 0, and we let ū denote the optimal

linear classifier. Our goal is to find a solution that can compete with ū. Previous state-of-
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the-art algorithms can reach a test error bound of C · OPT for some universal constant C

[23, 24], but their algorithms are complicated. On the other hand, since logistic regression

is one of the most fundamental algorithms in machine learning, it is natural to try to apply

it to this problem; however, previously only an Õ
(√

OPT
)

upper bound was known [25].

In Section 3.1, we first provide a lower bound of Ω
(√

OPT
)

for logistic regression (cf.

Theorem 3.1), thus matching the upper bound in [25]. Moreover, we also show that we can

overcome this lower bound, simply by first running logistic regression and then applying

the Perceptron algorithm with a restricted domain and a warm start; this algorithm is very

simple, and can reach an Õ(OPT) upper bound (cf. Theorem 3.2). This section is based on

[26].

Next in Section 3.2, we consider a general training set (i.e., we do not make any assumption

on the training set) and characterize the implicit bias of GD. First, we show that the training

set can be uniquely decomposed into two parts: a maximal linearly separable part, and the

remaining part which induces a strongly-convex optimization problem (cf. Theorem 3.3).

We also show that, with no prior knowledge of this decomposition, GD can find the correct

implicit bias over the parts: on the strongly convex part, GD finds the unique optimizer,

while on the maximal linearly separable part, GD converges in direction to the maximum-

margin classifier that is orthogonal to the strongly convex part (cf. Theorem 3.5). This

section is based on [17].

1.2.2 Neural networks

Next we turn to neural networks. In this thesis, we will focus on the case where the data

can be separated by a neural network, since in practice neural networks can often achieve

100% training accuracies; however it is also interesting to consider the nonseparable case,

and we have also started considering this setting in [27].

Two-layer ReLU networks. We start our analysis from (wide) two-layer ReLU networks,

using the idea of the neural tangent kernel (NTK) [28]. Formally, let W ∈ Rm×d denote the

first weight matrix, and a ∈ Rm denote the second weight matrix, the network outputs

f(x;W ) := a>max{Wx, 0} where the max operator is applied to each coordinate. For

simplicity, we fix a and only train W , but our ideas can also be applied to the deep case

[29]. We also let ∇f(x;W ) ∈ Rm×d denote the gradient of the network with respect to the

weight matrix W .

The idea of an NTK analysis is that, if the network is wide enough, then (i) we can already

fit the training data using the random features∇f(xi;W0) given by a wide network at random
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initialization W0, and (ii) during the GD process, these features stay roughly unchanged,

i.e., ∇f(xi;Wt) ≈ ∇f(xi;W0). In other words, the analysis of GD on a nonlinear network

can be approximated by the analysis of GD on a linear model (on a high-dimensional space

Rm×d). The latter GD process is easier to analyze due to convexity, and the approximation

error can be shown to be small if the network is wide enough. An empirical risk bound can

be shown using the above framework, and it is also possible to derive a test error bound via

a careful generalization analysis.

However, prior NTK results always require the width to be very large, such as a polynomial

of the number of training examples or inverse target error. In Chapter 4, we show that

actually a polylogarithmic width is enough for good training and test error bounds, using

the corresponding NTK margin (cf. Theorems 4.1 to 4.3). Our analysis is centered upon the

notion of NTK margin (cf. Assumptions 4.1 and 4.2), which is basically the linear margin in

the space of gradients ∇f(x;W0). The NTK margin also allows us to show a tight sample

complexity bound (cf. Section 4.4). This two-layer analysis is based on [30].

Deep homogeneous networks. Next we consider deep homogeneous networks, meaning

that given input x and model parameter w, if we scale w by a positive constant c, then

the output of the network is scaled by cL for some L > 0 (i.e., f(x; cw) = cLf(x;w)).

Examples include deep networks with linear and convolutional layers, max and average

pooling layers, and homogeneous activations, such as the identity activation x 7→ x, ReLU

activation x 7→ max{0, x}, and more generally powers of ReLU x 7→ max{0, x}k. On the

other hand, homogeneity does not allow skip connections and bias vectors. Here is a typical

homogeneous network, where the activation σ is homogeneous:

x 7→ WLσ
(
WL−1σ

(
· · ·σ(W1x) · · ·

))
.

The simplest homogeneous network is the deep linear network, which maps the input x

to WLWL−1 · · ·W2W1x, where WL, . . . ,W1 are the weight matrices. A deep linear network

has poor expressive power, since it can only represent a linear function; on the other hand,

it still induces a nonconvex optimization problem, and an analysis of it may shed some

light on nonlinear networks. In Section 5.1, we show that despite overparameterization and

nonconvexity, gradient flow can find a very simple solution: all weight matrices become

nearly rank-1, adjacent weight matrices tend to have identical top singular vectors, and the

whole network computes the maximum-margin predictor (cf. Theorems 5.1 and 5.2). This

section is based on [31].

Then in Section 5.2, we further generalize the previous result to deep homogeneous net-
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works. We show that the gradient flow iterate wt and the corresponding (negative) gradient

−∇R̂(wt) converge to the same direction (cf. Theorem 5.3), meaning

lim
t→∞

〈
wt
‖wt‖F

,
−∇R̂(wt)∥∥∥∇R̂(wt)

∥∥∥
F

〉
= 1.

This result is from [32]; it implies the previous result for deep linear networks, and can also

be applied in many other settings.
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Chapter 2: Linear classifiers with linearly-separable data

In this chapter, we focus on linear classifiers, and also assume the data is linearly separable

with a positive margin. Formally, with the underlying data distribution P , we assume there

exists a unit linear classifier u and a positive constant γ such that y〈u, x〉 ≥ γ almost

surely. Alternatively, we may only focus on the training set, and assume yi〈u, xi〉 ≥ γ for all

1 ≤ i ≤ n. Additionally, let

u∗ := arg max
‖u‖2=1

min
1≤i≤n

yi〈u, xi〉 and γ∗ := max
‖u‖2=1

min
1≤i≤n

yi〈u, xi〉

denote the maximum-margin classifier and maximum margin, respectively. The existence

and uniqueness of u∗ is guaranteed by Lemma 2.3, and thus its definition is valid. For

simplicity, we will also assume ‖x‖2 ≤ 1 almost surely (in the distributional case), or ‖xi‖2 ≤
1 for all 1 ≤ i ≤ n (with a training set).

The Perceptron algorithm [33] is a classical algorithm to solve this problem, and Novikoff

[10] showed an O(1/γ2) test error bound under the linear separability assumption. In Sec-

tion 2.1, we will first review the proof of this result, and then show that it can be adapted to

give a clean generalization analysis for SGD with the logistic loss (cf. Theorem 2.1). Similar

ideas will also be useful in the nonseparable setting (cf. Chapter 3) and in the analysis of

shallow ReLU networks (cf. Chapter 4).

In addition to a generalization bound, it is actually possible to give a much finer charac-

terization of the solution found by GD. Previously, Soudry et al. [16] showed that if we run

GD on a linearly separable training set with certain exponentially-tailed losses including the

exponential loss and logistic loss, then ‖wt‖2 →∞ while wt/‖wt‖2 → u∗. In other words, if

we keep running GD with logistic regression, then it actually finds the same solution as the

hard-margin support vector machine [11]. In a parallel work [17], we also proved this result,

using a technique from [18]. However, these approaches are not able to give the fastest

possible convergence rates. In Section 2.2, we will show that GD actually induces a mirror

descent update on a certain dual problem whose optimum is exactly given by the maximum

margin. This observation gives a clean interpretation of the implicit bias phenomenon, and

allows us to give a fast O(1/t) margin maximization rate (cf. Theorem 2.3).

In Section 2.3, we will further exploit the primal-dual framework and design a fast margin-

maximization algorithm that achieves an Õ(1/t2) rate (cf. Theorem 2.5). The key observa-

tion is that the dual objective is smooth, and thus can be optimized by Nesterov’s accelerated

method [4, 34, 35]. Moreover, the dual Nesterov method can be transformed into a primal
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momentum method, for which we prove the Õ(1/t2) rate.

Finally, above results all require certain exponentially-tailed losses. In Section 2.4, we will

show that even for general decreasing losses (e.g., a loss with a polynomial tail), the implicit

bias of GD can still be characterized in terms of the regularization path, which in general is

different from the maximum-margin solution (cf. Theorems 2.7 and 2.8).

Finally, we discuss related work in Section 2.5.

2.1 SGD TEST ERROR BOUNDS

Recall that `r(z) := max{−z, 0}. Starting from w0 := 0, we consider SGD with `r:

wt+1 := wt − `′r
(
yt〈wt, xt〉

)
ytxt.

More explicitly, if yt〈wt, xt〉 > 0, then wt+1 = wt, otherwise wt+1 = wt + ytxt (recall that we

let `′r(0) = −1). This is the Perceptron algorithm [33]. For simplicity, let zt := ytxt, and

thereby the update can be written as

wt+1 := wt − `′r
(
〈wt, zt〉

)
zt.

Below is a standard analysis from [10]: note that

‖wt+1‖2
2 = ‖wt‖2

2 − 2
〈
`′r
(
〈wt, zt〉

)
zt, wt

〉
+ `′r

(
〈wt, zt〉

)2 ‖zt‖2
2

≤ ‖wt‖2
2 + 2

(
`r(0)− `r

(
〈wt, zt〉

))
+ `′r

(
〈wt, zt〉

)2

≤ ‖wt‖2
2 + `′r

(
〈wt, zt〉

)2
= ‖wt‖2

2 − `′r
(
〈wt, zt〉

)
,

where we use convexity and ‖x‖2 ≤ 1 in the first inequality, and that `r(z) ≥ `r(0) = 0 in

the second inequality, and that (`′r)
2 = −`′r in the end. It then follows that

E
[
‖wt‖2

2

]
≤ E

∑
j<t

−`′r
(
〈wj, zj〉

) = E

∑
j<t

R0−1(wj)

 ,
since −`′r(z) = `0−1(z). On the other hand, as we assume there exists a unit vector u with

margin γ over the underlying distribution, it follows that

〈wt, u〉 =
∑
j<t

−`′r
(
〈wj, zj〉

)
〈u, zj〉 ≥ γ

∑
j<t

−`′r
(
〈wj, zj〉

)
.

11



Consequently,

E

∑
j<t

R0−1(wj)

 ≤ 1

γ
E
[
〈wt, u〉

]
≤ 1

γ
E
[
‖wt‖2

]
≤ 1

γ

√
E
[
‖wt‖2

2

]

≤ 1

γ

√√√√√E

∑
j<t

R0−1(wj)

,
which implies

E

∑
j<t

R0−1(wj)

 ≤ 1

γ2
,

and thus

E
[
min
j<t
R0−1(wj)

]
≤ 1

γ2t
.

In the above analysis for perceptron, we first derive an upper bound on E
[
‖wt‖2

2

]
, then

obtain a lower bound on E
[
〈wt, u〉

]
based on the linear separability assumption, and finally

combine both bounds to achieve a test error bound. Next we analyze SGD with the lo-

gistic loss using a similar perceptron-style analysis; however, care is needed to make this

replacement with logistic work, as detailed below. The analysis is basically from [14].

Theorem 2.1. With the logistic loss and a constant learning rate ηt = 1, SGD ensures

E
[
min
j<t
R0−1(wj)

]
≤ 4 ln(t)

γ2t
+

4

γt
.

To prove Theorem 2.1, we first prove the following general result. Note that it requires

−`′ ≤ `, which is not true for the ReLU loss; this is the key difference between the ReLU

loss and logistic loss.

Lemma 2.1. Given a convex loss ` with 0 ≤ −`′ ≤ 1 and −`′ ≤ `, for any w ∈ Rd and

t ≥ 1,

‖wt − w‖2
2 ≤ ‖w‖2

2 + 2
∑
j<t

`
(
〈w, zj〉

)
.
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Suppose furthermore `(z) ≤ e−z, let ut = u ln(t)/γ,

‖wt − ut‖2
2 ≤

ln(t)2

γ2
+ 2.

Proof. By the SGD update rule and convexity of `, for any w ∈ Rd,

‖wj+1 − w‖2
2 = ‖wj − w‖2

2 − 2
〈
`′
(
〈wj, zj〉

)
zj, wj − w

〉
+ `′

(
〈wj, zj〉

)2 ‖zj‖2
2

≤ ‖wj − w‖2
2 − 2

(
`
(
〈wj, zj〉

)
− `
(
〈w, zj〉

))
+ `′

(
〈wj, zj〉

)2 ‖zj‖2
2.

Furthermore, since ‖zj‖2 ≤ 1, and 0 ≤ −`′ ≤ 1, and −`′ ≤ `,

`′
(
〈wj, zj〉

)2 ‖zj‖2
2 ≤ −`′

(
〈wj, zj〉

)
≤ `

(
〈wj, zj〉

)
.

As a result,

‖wj+1 − w‖2
2 ≤ ‖wj − w‖2

2 − 2
(
`
(
〈wj, zj〉

)
− `
(
〈w, zj〉

))
+ `
(
〈wj, zj〉

)
= ‖wj − w‖2

2 − `
(
〈wj, zj〉

)
+ 2`

(
〈w, zj〉

)
≤ ‖wj − w‖2

2 + 2`
(
〈w, zj〉

)
.

Take the sum from step 0 to t− 1, the first claim of Lemma 2.1 is proved.

By the linear separability assumption, 〈u, zj〉 ≥ γ. Therefore 〈ut, zj〉 ≥ ln(t), and since

`(z) ≤ e−z,

2
∑
j<t

`
(
〈ut, zj〉

)
≤ 2

∑
j<t

exp
(
− ln(t)

)
≤ 2

t

∑
j<t

1 ≤ 2.

QED.

Lemma 2.1 gives an upper bound on ‖wt − ut‖2
2; to finish a perceptron-style analysis, we

further need a lower bound on 〈wt − ut, u〉.

Lemma 2.2. For all t ≥ 1, it holds that

E
[
‖wt − ut‖2

]
≥ E

[
〈wt − ut, u〉

]
≥ γE

∑
j<t

Q(wj)

− ln(t)

γ
.
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Proof. We have

〈wt − ut, u〉 = 〈wt, u〉 − 〈ut, u〉

=
∑
j<t

−`′
(
〈wj, zj〉

)
〈zj, u〉 −

ln(t)

γ

≥ γ
∑
j<t

−`′
(
〈wj, zj〉

)
− ln(t)

γ
.

Take the expectation on both sides, and recall that Q(w) := E
[
−`′

(
y〈w, x〉

)]
(cf. eq. (1.2)),

the proof is done. QED.

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Lemmas 2.1 and 2.2 imply

γE

∑
j<t

Q(wj)

− ln(t)

γ
≤

√
ln(t)2

γ2
+ 2 ≤ ln(t)

γ
+ 2,

which implies

E

∑
j<t

Q(wj)

 ≤ 2 ln(t)

γ2
+

2

γ
,

and thus

E
[
min
j<t
Q(wj)

]
≤ 2 ln(t)

γ2t
+

2

γt
.

As noted in [36], `0−1(z) ≤ −2`′log(z), and therefore

E
[
min
j<t
R0−1(wj)

]
≤ 4 ln(t)

γ2t
+

4

γt
.

QED.

2.2 A PRIMAL-DUAL ANALYSIS OF THE IMPLICIT BIAS

In the previous section, we showed an Õ(1/t) test error bound for SGD with the logistic

loss. It turns out that a similar test error bound can also be showed for GD [37]. On the
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other hand, in addition to a test error bound, it is possible to give a finer characterization

of the GD iterates: it was showed in [16] that with an exponentially-tailed loss such as the

exponential loss or logistic loss, it holds that

lim
t→∞
‖wt‖2 =∞, and lim

t→∞

wt
‖wt‖2

= u∗.

Here we give an alternative proof of this result using a primal-dual framework. More pre-

cisely, we will show that for each GD iterate wt, we can define a corresponding dual iterate

qt, and the update on qt is a mirror descent (multiplicative weight) update on a certain dual

objective whose optimum is given exactly by the maximum margin. This observation gives

a nice intuition why GD converges to the maximum-margin solution, and also allows us

to design fast margin maximization algorithms (cf. Theorems 2.3 and 2.5) and prove an

alignment property for deep homogeneous networks (cf. Section 5.2).

2.2.1 A primal-dual framework

For simplicity, here we focus on the exponential loss `exp; however, as discussed in [19], the

analysis can also be extended to the logistic loss. For simplicity, let zi := yixi, and collect

them into a matrix Z ∈ Rn×d. Moreover, given ξ ∈ Rn, let ψ(ξ) := ln
(∑n

i=1 exp(ξi)
)

denote

the ln-sum-exp function. Given a GD iterate wt, let pt := −Zwt, and we further define a

dual variable qt ∈ ∆n (the probability simplex) by

qt,i :=
exp

(
−〈wt, zi〉

)∑n
i′=1 exp

(
−〈wt, zi′〉

) , or equivalently qt := ∇ψ(pt).

It then holds that

wt+1 = wt − ηt∇R̂(wt) = wt + ηt

n∑
i=1

1

n
exp

(
−〈wt, zi〉

)
zi = wt + η̂tZ

>qt,

where we let η̂t := ηtR̂(wt). This further implies that

pt+1 = pt − Z(wt+1 − wt) = pt − η̂tZZ>qt = pt − η̂t∇φ(qt),

where φ(q) := ‖Z>q‖2
2/2. To sum up, we have

pt+1 = pt − η̂t∇φ(qt), and qt+1 := ∇ψ(pt+1).
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This update on qt is exactly a mirror descent or dual averaging [38] update on the dual

objective φ, with learning rate η̂t and an entropy regularizer. In the following, we will

see that φ is the key potential function in our primal-dual framework; moreover, it can be

generalized to the nonlinear case (cf. eq. (5.12)), which will be used in our implicit bias

analysis for deep homogeneous networks.

First, we note that the optimum of φ is exactly characterized by the maximum margin.

Lemma 2.3. It holds that

γ∗ := max
‖u‖2≤1

min
1≤i≤n

(Zu)i = min
q∈∆n

∥∥∥Z>q∥∥∥
2
,

and there exists a unique primal optimal solution u∗, such that for any dual optimal solution

q∗, it holds that Z>q∗ = γ∗u∗.

Proof. Given a convex set C, recall that ιC denote the indicator function, i.e., ιC(x) = 0 if

x ∈ C, and ιC(x) =∞ if x 6∈ C. We note the following convex conjugate pairs:

ι∗∆n
(v) = sup

u∈∆n

〈v, u〉 = max
1≤i≤n

vi,

(‖ · ‖2)∗(q) = ι‖·‖2≤1(q).

This gives the Fenchel strong duality [39, Theorem 3.3.5]

min
(
‖Z>q‖2 + ι∆n(q)

)
= max−ι‖·‖2≤1(−w)− ι∗∆n

(Zw)

= max

{
−max

i
(Zw)i : ‖w‖2 ≤ 1

}
= max

{
min
i

(Z(−w))i : ‖w‖2 ≤ 1

}
= max

{
min
i

(Zu)i : ‖u‖2 ≤ 1

}
Now consider an arbitrary optimal primal-dual pair (w∗, q∗). Fenchel-Young’s inequality

[39, Proposition 3.3.4] implies for any w and q that

‖Z>q‖2 + ι‖·‖2≤1(−w) + ι∆n(q) + ι∗∆n
(Zw) ≥

〈
Z>q,−w

〉
+ 〈q, Zw〉 = 0.

The optimal pair (w∗, q∗) satisfies the above inequality with an equality, and it follows from

[39, Proposition 3.3.4] that Z>q∗ ∈ ∂
(
ι‖·‖2≤1

)
(−w∗), meaning Z>q∗ and −w∗ have the same

direction. Since
∥∥Z>q∗∥∥

2
= γ∗, and let u∗ = −w∗, we have Z>q∗ = γ∗u∗. Since the above
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argument holds for any optimal primal-dual pair, it follows that u∗ is unique. QED.

As mentioned above, since the update on qt is a mirror descent update which tries to

minimize φ, and it follows from Lemma 2.3 that the optimum of φ is exactly characterized

by (u∗, q∗), this would give an intuitive explanation of the implicit bias phenomenon if the

dual objective φ can be globally minimized by qt. Next we show that this is indeed the case,

along with a primal-dual convergence rate, based on [19, Theorem 1]. It will also be the

basis of our fast O(1/t) margin maximization rate for normalized GD (cf. Theorem 2.3).

Let ψ∗ denote the convex conjugate of ψ; formally, ψ∗ denotes the entropy function, where

given q ∈ ∆n, we have ψ∗(q) :=
∑n

i=1 qi ln(qi). Given q ∈ ∆n, the Bregman distance between

q and qt is defined as

Dψ∗(q, qt) := ψ∗(q)− ψ∗(qt)− 〈pt, q − qt〉.

Since ψ∗ denotes the entropy function, Dψ∗ is actually just the KL-divergence. Here is our

main convergence result.

Theorem 2.2. For all q ∈ ∆n, if η̂t ≤ 1, then the following results hold:

1. Dual convergence: for all t ≥ 0,

φ(qt+1) ≤ φ(qt), and η̂t
(
φ(qt+1)− φ(q)

)
≤ Dψ∗(q, qt)−Dψ∗(q, qt+1).

As a result, for all t > 0,

φ(qt)− φ(q) ≤ Dψ∗(q, q0)−Dψ∗(q, qt)∑
j<t η̂j

≤ Dψ∗(q, q0)∑
j<t η̂j

.

2. Primal convergence: for all t ≥ 0,

ψ(pt)− ψ(pt+1) ≥ η̂t
(
φ(qt) + φ(qt+1)

)
=
η̂t
2

∥∥∥Z>qt∥∥∥2

2
+
η̂t
2

∥∥∥Z>qt+1

∥∥∥2

2
,

and thus if η̂t is nonincreasing, then

ψ(p0)− ψ(pt) ≥
∑
j<t

η̂j

∥∥∥Z>qj∥∥∥2

2
− η̂0

2

∥∥∥Z>q0

∥∥∥2

2
+
η̂t
2

∥∥∥Z>qt∥∥∥2

2
.

This rate is tight up to a constant, since ψ(p0)− ψ(pt) ≤
∑

j<t η̂j
∥∥Z>qj∥∥2

2
.

Here are some comments on Theorem 2.2.
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• If we let η̂t = 1, then we get an O(1/t) dual convergence rate. By contrast, [40] con-

sidered boosting, and can only handle step size η̂t ∝ 1/
√
t+ 1 and give an Õ(1/

√
t)

dual rate. This is because the dual objective φ(q) :=
∥∥Z>q∥∥2

2
/2 for gradient descent

is smooth, while for boosting the dual objective is given by
∥∥Z>q∥∥2

∞ /2, which is non-

smooth. In some sense, we can handle a constant η̂t and prove a faster rate because

both the primal objective ψ and the dual objective φ are smooth.

• Moreover, the primal and dual smoothness allow us to prove a super tight primal

convergence rate for ψ. By contrast, if we use a standard smoothness guarantee, then

the error term (compared with the upper bound on ψ(p0)− ψ(pt)) can be as large as∑
j<t η̂j

∥∥Z>qj∥∥2

2
/2 (cf. Lemma 2.5). While a constant factor does not hurt the risk

bound too much, it can stop us from proving an O(1/t) margin maximization rate (cf.

Section 2.2.2).

• For the exponential loss (and other exponentially-tailed losses), [16] proved that wt

converges to the maximum margin direction. This is called an “implicit bias” result

since it does not follow from classical results such as risk minimization, and requires

a nontrivial proof tailored to the exponential function. By contrast, Theorem 2.2

explicitly shows that the dual iterates minimize the dual objective φ, and the minimum

of φ is given exactly by the maximum margin as showed by Lemma 2.3, which gives

an intuitive explanation of the implicit bias phenomenon.

Next we prove Theorem 2.2. One of the key properties we use is the `1 smoothness of φ.

Lemma 2.4. The function φ : Rn → R given by φ(θ) :=
∥∥Z>θ∥∥2

2
/2 is 1-smooth with respect

to the `1 norm.

Proof. For any θ, θ′ ∈ Rn, using the Cauchy-Schwarz inequality and ‖zi‖ ≤ 1,

∥∥∇φ(θ)−∇φ(θ′)
∥∥
∞ =

∥∥∥ZZ>(θ − θ′)
∥∥∥
∞

= max
1≤i≤n

∣∣∣∣〈Z>(θ − θ′), zi
〉∣∣∣∣

≤ max
1≤i≤n

∥∥∥Z>(θ − θ′)
∥∥∥

2
‖zi‖2

≤
∥∥∥Z>(θ − θ′)

∥∥∥
2
.

Furthermore, by the triangle inequality and ‖zi‖2 ≤ 1,

∥∥∥Z>(θ − θ′)
∥∥∥

2
≤

n∑
i=1

∣∣θi − θ′i∣∣ ‖zi‖2 ≤
n∑
i=1

∣∣θi − θ′i∣∣ =
∥∥θ − θ′∥∥

1
.
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Therefore φ is 1-smooth with respect to the `1 norm. QED.

Next, here are some standard results we need, from the smoothness of ψ.

Lemma 2.5. We have

ψ(pt+1)− ψ(pt) ≤ −η̂t
∥∥∥Z>qt∥∥∥2

2
+
η̂2
t

2

∥∥∥Z>qt∥∥∥2

2
and Dψ∗(qt+1, qt) ≥

1

2
‖qt+1 − qt‖2

1.

Proof. We first claim that ψ is 1-smooth with respect to the `∞ norm. Similarly to the proof

of [41, Lemma 14], it is enough to show that for any ξ, v ∈ Rn, it holds that v>∇2ψ(ξ)v ≤
‖v‖2

∞. Note that

∇2ψ(ξ) = diag
(
∇ψ(ξ)

)
−∇ψ(ξ)∇ψ(ξ)>,

where

∇ψ(ξ) =

(
eξ1∑n
i=1 e

ξi
, . . . ,

eξn∑n
i=1 e

ξi

)
.

Therefore it is enough to show that

n∑
i=1

∇ψ(ξ)iv
2
i ≤ max

1≤i≤n
v2
i ,

which is true since
∑n

i=1∇ψ(ξ)i = 1.

Next we prove the main claims. Since ψ is 1-smooth with respect to the `∞ norm,

ψ(pt+1)− ψ(pt) ≤
〈
∇ψ(pt), pt+1 − pt

〉
+

1

2
‖pt+1 − pt‖2

∞

=
〈
qt,−η̂tZZ>qt

〉
+
η̂2
t

2

∥∥∥ZZ>qt∥∥∥2

∞

= −η̂t
∥∥∥Z>qt∥∥∥2

2
+
η̂2
t

2

∥∥∥ZZ>qt∥∥∥2

∞
.

Moreover, since ‖zi‖2 ≤ 1,

∥∥∥ZZ>qt∥∥∥
∞

= max
1≤i≤n

∣∣∣∣〈Z>qt, zi〉∣∣∣∣ ≤ max
1≤i≤n

∥∥∥Z>qt∥∥∥
2
‖zi‖2 ≤

∥∥∥Z>qt∥∥∥
2
.

As a result,

ψ(pt+1)− ψ(pt) ≤ −η̂t
∥∥∥Z>qt∥∥∥2

2
+
η̂2
t

2

∥∥∥Z>qt∥∥∥2

2
.
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On the second claim, note that since ψ is 1-smooth with respect to the `∞ norm, [42,

Lemma 2.19] implies that ψ∗ is 1-strongly convex with respect to the `1 norm, and in

particular Dψ∗(qt+1, qt) ≥ ‖qt+1 − qt‖2
1/2. QED.

Next is a standard result for mirror descent.

Lemma 2.6. For any t ≥ 0 and q ∈ ∆n, it holds that

η̂t
(
φ(qt)− φ(q)

)
≤
〈
η̂t∇φ(qt), qt − qt+1

〉
−Dψ∗(qt+1, qt) +Dψ∗(q, qt)−Dψ∗(q, qt+1).

Moreover, qt+1 is the unique minimizer of

h(q) := φ(qt) +
〈
∇φ(qt), q − qt

〉
+

1

η̂t
Dψ∗(q, qt),

and specifically h(qt+1) ≤ h(qt) = φ(qt).

Proof. Since φ is convex, we have

η̂t
(
φ(qt)− φ(q)

)
≤
〈
η̂t∇φ(qt), qt − q

〉
=
〈
η̂t∇φ(qt), qt − qt+1

〉
+
〈
η̂t∇φ(qt), qt+1 − q

〉
.

Recall that pt+1 = pt − η̂tZZ>qt = pt − η̂t∇φ(qt), therefore

η̂t
(
φ(qt)− φ(q)

)
≤
〈
η̂t∇φ(qt), qt − qt+1

〉
+
〈
η̂t∇φ(qt), qt+1 − q

〉
=
〈
η̂t∇φ(qt), qt − qt+1

〉
+ 〈pt − pt+1, qt+1 − q〉 .

It can be verified by direct expansion that

〈pt − pt+1, qt+1 − q〉 = Dψ∗(q, qt)−Dψ∗(q, qt+1)−Dψ∗(qt+1, qt),

and thus

η̂t
(
φ(qt)− φ(q)

)
≤
〈
η̂t∇φ(qt), qt − qt+1

〉
+Dψ∗(q, qt)−Dψ∗(q, qt+1)−Dψ∗(qt+1, qt).

On the other claim, let ∂ denote subdifferential. We have

∂h(q) =
{
∇φ(qt)

}
+

1

η̂t

(
∂ψ∗(q)− {pt}

)
.

Note that q′ ∈ arg minh(q) if and only if 0 ∈ ∂h(q′), which is equivalent to pt − η̂t∇φ(qt) =

pt+1 ∈ ∂ψ∗(q). By [43, Theorem 23.5], pt+1 ∈ ∂ψ∗(q) if and only if q = ∇ψ(pt+1); in other

words, qt+1 is the unique minimizer of h, and specifically h(qt+1) ≤ h(qt) = φ(qt). QED.
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With Lemmas 2.4 to 2.6, we can prove Theorem 2.2.

Proof of Theorem 2.2. Since φ is 1-smooth with respect to the `1 norm,

φ(qt+1)− φ(qt) ≤
〈
∇φ(qt), qt+1 − qt

〉
+

1

2
‖qt+1 − qt‖2

1.

Further invoking Lemma 2.5, and that η̂t ≤ 1, and the function h defined in Lemma 2.6, it

follows that

φ(qt+1) ≤ φ(qt) +
〈
∇φ(qt), qt+1 − qt

〉
+

1

2
‖qt+1 − qt‖2

1

≤ φ(qt) +
〈
∇φ(qt), qt+1 − qt

〉
+Dψ∗(qt+1, qt)

≤ φ(qt) +
〈
∇φ(qt), qt+1 − qt

〉
+

1

η̂t
Dψ∗(qt+1, qt) (2.1)

= h(qt+1) ≤ φ(qt),

which proves that φ(qt) is nonincreasing.

To prove the iteration guarantee for φ, note that rearranging the terms of eq. (2.1) gives

the following inequality

η̂t
〈
∇φ(qt), qt+1 − qt

〉
+Dψ∗(qt+1, qt) ≥ η̂t

(
φ(qt+1)− φ(qt)

)
.

Lemma 2.6 then implies

η̂t
(
φ(qt)− φ(q)

)
≤ η̂t

(
φ(qt)− φ(qt+1)

)
+Dψ∗(q, qt)−Dψ∗(q, qt+1).

Rearranging terms gives

η̂t
(
φ(qt+1)− φ(q)

)
≤ Dψ∗(q, qt)−Dψ∗(q, qt+1). (2.2)

Taking the sum of eq. (2.2) from 0 to t − 1, and noting that φ(qj+1) ≥ φ(qt) for all j < t

since f is nonincreasing, the proof is done.

To prove the iteration guarantee for ψ, note that

Dψ∗(qt+1, qt) = ψ∗(qt+1)− ψ∗(qt)− 〈pt, qt+1 − qt〉

= 〈pt+1, qt+1〉 − ψ(pt+1)− 〈pt, qt〉+ ψ(pt)− 〈pt, qt+1 − qt〉

= ψ(pt)− ψ(pt+1)− 〈qt+1, pt − pt+1〉

= ψ(pt)− ψ(pt+1)− η̂t
〈
Z>qt, Z

>qt+1

〉
.
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Further invoking eq. (2.1), we have

ψ(pt)− ψ(pt+1) ≥ η̂t

(
φ(qt+1)− φ(qt)−

〈
∇φ(qt), qt+1 − qt

〉
+
〈
Z>qt, Z

>qt+1

〉)
=
η̂t
2

∥∥∥Z>qt∥∥∥2

2
+
η̂t
2

∥∥∥Z>qt+1

∥∥∥2

2
.

Telescoping gives the lower bound on ψ(p0) − ψ(pt). For the upper bound, note that ψ is

convex, and thus

ψ(pt)− ψ(pt+1) ≤ 〈qt, pt − pt+1〉 =
〈
qt, η̂tZZ

>qt

〉
= η̂t

∥∥∥Z>qt∥∥∥2

2
.

QED.

2.2.2 O(1/t) margin maximization rate for normalized GD

Here we show an O(1/t) margin maximization rate for GD with η̂t = 1 (equivalently

ηt = 1/R̂(wt)), based on [19, Theorem 7]. We let w0 := 0, though our analysis can be easily

extended to handle nonzero initialization.

Theorem 2.3. If η̂t = ηtR̂(wt) ≤ 1 is nonincreasing and w0 = 0, then

min1≤i≤n yi〈wt, xi〉
‖wt‖2

≥ −ψ(−Zwt)
‖wt‖2

≥ γ − ln(n) + 1

γ
∑

j<t η̂j
.

Margin maximization has been analyzed in many settings: [18] proved that for any ε > 0,

the margin can be maximized by coordinate descent to γ− ε with an O(1/t) rate, while [44]

showed an Õ(1/
√
t) margin maximization rate for gradient descent by letting η̂t ∝ 1/

√
t+ 1.

They also analyzed the quantity −ψ(−Zwt)/‖wt‖2, but used Lemma 2.5. If we let η̂t be a

constant in Lemma 2.5, the error term
∑

j<t

βη̂2j
2

∥∥Z>qj∥∥2

2
will be too large to prove exact

margin maximization, while if we let η̂t = 1/
√
t+ 1, then the error term is O

(
ln(t)

)
, but

only an O
(

ln(t)/
√
t
)

rate can be obtained. By contrast, the proof of Theorem 2.3 uses the

tighter guarantee given by Theorem 2.2, which always has a bounded error term.

We can also directly run (sub)gradient descent on the (negative) margin function over the

unit `2 ball:

min
‖w‖2≤1

max
1≤i≤n

yi〈w, xi〉.

This gives the batch perceptron algorithm [21], which has O(1/
√
t) convergence rate. [45]
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gives a normalized Perceptron algorithm, which also has O(1/
√
t) convergence rate. Finally,

we may also apply the ellipsoid method to the margin function; to ensure an ε additive error,

it requires O(d2 ln(1/ε)) steps [9, Theorem 2.4]. In the case where d is large, our convergence

rate in Theorem 2.3 is still faster.

Proof of Theorem 2.3. Theorem 2.2 and lemma 2.3 imply that

−ψ(pt) ≥ −ψ(p0) +
∑
j<t

η̂j

∥∥∥Z>qj∥∥∥2

2
− η̂0

2

∥∥∥Z>q0

∥∥∥2

2

≥ −ψ(p0) + γ
∑
j<t

η̂j

∥∥∥Z>qj∥∥∥
2
− η̂0

2

∥∥∥Z>q0

∥∥∥2

2
.

Then we have

−ψ(−Zwt)
‖wt‖2

=
−ψ(pt)

‖wt‖2

≥
−ψ(p0) + γ

∑
j<t η̂j

∥∥Z>qj∥∥2
− η̂0

2

∥∥Z>q0

∥∥2

2

‖wt‖2

= γ ·
∑

j<t η̂j
∥∥Z>qj∥∥2

‖wt‖2

−
ψ(p0) + η̂0

2

∥∥Z>q0

∥∥2

2

‖wt‖2

.

It follows from the triangle inequality that ‖wt‖2 ≤
∑

j<t η̂j
∥∥Z>qj∥∥2

. Moreover, ψ(p0) =

ln(n), and
∥∥Z>q0

∥∥
2
≤ 1 since ‖zi‖2 ≤ 1. Therefore we have

−ψ(−Zwt)
‖wt‖2

≥ γ − ln(n) + 1

‖wt‖2

.

Furthermore, note that ‖wt‖2 ≥ 〈wt, u∗〉, and

〈wj+1 − wj, u∗〉 = η̂j

〈
Z>qj, u

∗
〉

= η̂j〈Zu∗, qj〉 ≥ η̂jγ,

which implies

−ψ(−Zwt)
‖wt‖2

≥ γ − ln(n) + 1

γ
∑

j<t η̂j
.

Finally, note that for the exponential loss,

ψ(−Zw) = ln

 n∑
i=1

exp
(
〈−zi, w〉

) ≥ ln

(
exp

(
max
1≤i≤n

〈−zi, w〉
))

= − min
1≤i≤n

〈zi, w〉,

and thus min1≤i≤n〈zi, w〉 = min1≤i≤n yi〈w, xi〉 ≥ −ψ(−Zw). QED.
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2.3 FAST MARGIN MAXIMIZATION VIA DUAL ACCELERATION

In this section, we further exploit the primal-dual framework developed in the previous

section, and designed a momentum-style algorithm that achieves an Õ(1/t2) margin maxi-

mization rate. This section is based on [20].

The algorithm is given by

gt := βt

(
gt−1 +

∇R̂(wt)

R̂(wt)

)
, and wt+1 := wt − θt

(
gt +

∇R̂(wt)

R̂(wt)

)
. (2.3)

Our main result is that these iterates, with a proper choice of θt and βt, can maximize the

margin at a rate of Õ(1/t2), whereas prior work had a rate of O(1/t) at best. The key

idea is to reverse the primal-dual relationship discussed in the previous section: therefore

we show that primal normalized GD is equivalent to dual mirror descent, but here we start

from the dual, and apply Nesterov acceleration to make dual optimization faster, and then

translate the dual iterates into the momentum form in eq. (2.3). Note that if our goal is

just to accelerate dual optimization, then it is natural to apply Nesterov’s method; however,

here our goal is to accelerate (primal) margin maximization – it was unclear whether the

momentum method changes the implicit bias, and our margin analysis is very different from

the standard analysis of Nesterov’s method.

2.3.1 A Unified Analysis of Normal and Accelerated Dual Averaging

We first present some general results that will be used throughout our analysis. Consider

a convex function φ (which can be arbitrary), and a convex set C, such that φ is well-defined

defined and 1-smooth with respect to norm ‖ · ‖ on C. Moreover, suppose ω : C → R is

differentiable, closed, proper, and 1-strongly convex with respect to the same norm ‖ · ‖. We

maintain three sequences qt, µt, νt: initialize µ0 = q0 ∈ C, and for t ≥ 0, let

νt := (1− λt)µt + λtqt,

qt+1 := arg min
q∈C

(
φ(qt) +

〈
∇φ(νt), q − qt

〉
+
λt
θt
Dω(q, qt)

)
,

µt+1 := (1− λt)µt + λtqt+1,

(2.4)

where λt, θt ∈ (0, 1], and Dω(q, q′) := ω(q) − ω(q′) −
〈
∇ω(q′), q − q′

〉
denotes the Bregman

distance.

The above update to qt resembles the mirror descent update. We can instead use a
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dual-averaging update, which does not require differentiability of ω: first note that since

ω is strongly convex, its convex conjugate ω∗ is smooth [42, lemma 2.19], and thus it is

well-defined and differentiable on the whole Euclidean space. For any initialization p0, let

q0 := ∇ω∗(p0) and for t ≥ 0, let

pt+1 := pt −
θt
λt
∇φ(νt), and qt+1 := ∇ω∗(pt+1). (2.5)

Note that it is exactly the original update to qt if for all t ≥ 0 and q ∈ C, we define

Dω(q, qt) := ω(q)− ω(qt)− 〈pt, q − qt〉. Below we will analyze this dual-averaging update.

The following result is crucial to our analysis. It combines a dual averaging analysis and

a Nesterov analysis: when θt = 1, it is basically [34, eq. (24)], and choosing a proper λt

would give us acceleration; on the other hand, we further handle the case of λt = 1, when it

becomes the usual convergence result for dual averaging.

Lemma 2.7. If λt, θt ∈ (0, 1] for all t ≥ 0, then for all t ≥ 1 and q ∈ C,

θt−1

λ2
t−1

(
φ(µt)− φ(q)

)
+

t−1∑
j=1

(
θj−1

λ2
j−1

− θj(1− λj)
λ2
j

)(
φ(µj)− φ(q)

)
≤ Dω(q, q0)−Dω(q, qt) +

θ0(1− λ0)

λ2
0

(
φ(µ0)− φ(q)

)
.

To prove Lemma 2.7, we first recall the following standard result on mirror descent. Its

proof includes direct expansion and calculation, and thus is omitted.

Lemma 2.8. For all t ≥ 0 and q ∈ C,

〈pt − pt+1, qt+1 − q〉 = Dω(q, qt)−Dω(q, qt+1)−Dω(qt+1, qt).

Now we are ready to prove Lemma 2.7.

Proof of Lemma 2.7. For any t ≥ 0 and q ∈ C,

φ(νt)− φ(q) ≤
〈
∇φ(νt), νt − q

〉
=
〈
∇φ(νt), νt − qt

〉
+
〈
∇φ(νt), qt − q

〉
=

1− λt
λt

〈
∇φ(νt), µt − νt

〉
+
〈
∇φ(νt), qt − q

〉
≤ 1− λt

λt

(
φ(µt)− φ(νt)

)
+
〈
∇φ(νt), qt − q

〉
. (2.6)
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Moreover,

〈
∇φ(νt), qt − q

〉
=
〈
∇φ(νt), qt − qt+1

〉
+
〈
∇φ(νt), qt+1 − q

〉
=
〈
∇φ(νt), qt − qt+1

〉
+
λt
θt
〈pt − pt+1, qt+1 − qt〉

=
〈
∇φ(νt), qt − qt+1

〉
− λt
θt
Dω(qt+1, qt) +

λt
θt

(
Dω(q, qt)−Dω(q, qt+1)

)
,

(2.7)

where we use Lemma 2.8 in the last step. Next by 1-smoothness of φ and 1-strong convexity

of ω, we have

φ(µt+1)− φ(νt) ≤
〈
∇φ(νt), µt+1 − νt

〉
+

1

2
‖µt+1 − νt‖2

= λt
〈
∇φ(νt), qt+1 − qt

〉
+
λ2
t

2
‖qt+1 − qt‖2

≤ λt
〈
∇φ(νt), qt+1 − qt

〉
+
λ2
t

2θt
‖qt+1 − qt‖2

≤ λt
〈
∇φ(νt), qt+1 − qt

〉
+
λ2
t

θt
Dω(qt+1, qt),

and therefore

〈
∇φ(νt), qt − qt+1

〉
− λt
θt
Dω(qt+1, qt) ≤

1

λt

(
φ(νt)− φ(µt+1)

)
. (2.8)

Then eqs. (2.6) to (2.8) imply

φ(νt)− φ(q) ≤
〈
∇φ(νt), νt − q

〉
≤ 1− λt

λt

(
φ(µt)− φ(νt)

)
+

1

λt

(
φ(νt)− φ(µt+1)

)
+
λt
θt

(
Dω(q, qt)−Dω(q, qt+1)

)
,

(2.9)

and rearranging terms gives

1

λt

(
φ(µt+1)− φ(q)

)
− 1− λt

λt

(
φ(µt)− φ(q)

)
≤ λt
θt

(
Dω(q, qt)−Dω(q, qt+1)

)
.

Multiply both sides by θt/λt, and then take the sum from step 0 to t − 1, the proof is

finished. QED.

Next we invoke Lemma 2.7 to get concrete rates. We further make the following require-
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Algorithm 2.1: Momentum-style margin maximization.

Input: data matrix Z ∈ Rn×d, step size (θt)
∞
t=0, momentum factor (βt)

∞
t=0.

Initialize: w0 = g−1 = (0, . . . , 0) ∈ Rd, q0 = ( 1
n
, . . . , 1

n
) ∈ ∆n.

for t = 0, 1, 2, . . . do
gt ← βt(gt−1 − Z>qt).
wt+1 ← wt − θt

(
gt − Z>qt

)
.

qt+1 ∝ exp(−Zwt+1), and qt+1 ∈ ∆n.
end for

ment on λt:

λ0 := 1, and
1

λ2
t

− 1

λt
≤ 1

λ2
t−1

for all t ≥ 1. (2.10)

Note that by this construction,

1

λ2
t

≤ 1

λ2
0

+
t∑

j=1

1

λt
=

t∑
j=0

1

λt
. (2.11)

Theorem 2.4. With eq. (2.10) satisfied and θt = 1, for all t ≥ 1 and q∗ ∈ arg minq∈C φ(q),

φ(µt)− φ(q∗) ≤ λ2
t−1

(
Dω(q∗, q0)−Dω(q∗, qt)

)
≤ λ2

t−1Dω(q∗, q0).

In particular, if λt = 2/(t+ 2), then

φ(µt)− φ(q∗) ≤ 4Dω(q∗, q0)

(t+ 1)2
.

Proof. For q∗ ∈ arg minq∈C φ(q), we have φ(µj)−φ(q∗) ≥ 0. It then follows from Lemma 2.7

and eq. (2.10) and λ0 = 1 that

1

λ2
t−1

(
φ(µt)− φ(q∗)

)
≤ Dω(q∗, q0)−Dω(q∗, qt).

QED.

2.3.2 A momentum-style algorithm

Our momentum-style algorithm is formally described in Algorithm 2.1. It is equivalent to

eq. (2.3) since Z>qt = Z>∇ψ(−Zwt) = −∇R̂(wt)/R̂(wt).
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Here is our main convergence result.

Theorem 2.5. Let wt and gt be given by Algorithm 2.1 with θt = 1 and βt = t/(t+1), then

for all t ≥ 1,

min1≤i≤n yi〈wt, xi〉
‖wt‖2

≥ γ∗ −
4
(
1 + ln(n)

) (
1 + 2 ln(t+ 1)

)
γ∗(t+ 1)2

.

Next we prove Theorem 2.5. First, we apply Nesterov’s method with the `1 geometry and

entropy regularizer [34, 35] to optimize the dual objective φ. Specifically, we run eq. (2.4)

with ‖ · ‖ = ‖ · ‖1, and φ(q) =
∥∥Z>q∥∥2

2
/2, and ω = ψ∗ (the entropy function). Concretely,

let µ0 = q0 := ( 1
n
, . . . , 1

n
); for t ≥ 0, let λt, θt ∈ (0, 1], and

νt := (1− λt)µt + λtqt,

qt+1 ∝ qt � exp

(
− θt
λt
ZZ>νt

)
, qt+1 ∈ ∆n,

µt+1 := (1− λt)µt + λtqt+1.

By invoking Theorem 2.4, we can show an O(1/t2) convergence rate on φ. However, this

rate is not needed in the margin analysis; instead, we should construct the corresponding

primal iterates based on the above dual iterates.

Here we construct primal variables (wt)
∞
t=0 such that ∇ψ(−Zwt) = qt. (We do not try

to make ∇ψ(−Zwt) = νt or µt, since only qt is constructed using a mirror descent or dual

averaging update.) Let w0 := 0, and for t ≥ 0, let

wt+1 := wt +
θt
λt
Z>νt. (2.12)

We can verify that qt is indeed the dual variable to wt, in the sense that ∇ψ(−Zwt) = qt:

this is true by definition at t = 0, since ∇ψ(−Zw0) = ∇ψ(0) = q0. For t ≥ 0, we have

qt+1 ∝ qt � exp

(
− θt
λt
ZZ>νt

)
∝ exp(−Zwt)� exp

(
− θt
λt
ZZ>νt

)
= exp

(
−Z

(
wt +

θt
λt
Z>νt

))
= exp(−Zwt+1).

Next, we verify that eq. (2.12) is consistent with eq. (2.3) and Algorithm 2.1.
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Lemma 2.9. Let wt be constructed by eq. (2.12). For all λt, θt ∈ (0, 1], if λ0 = 1, then for

all t ≥ 0,

wt+1 = wt − θt
(
gt − Z>qt

)
, (2.13)

where g0 := 0, and for t ≥ 1,

gt :=
λt−1(1− λt)

λt

(
gt−1 − Z>qt

)
. (2.14)

Specifically, for λt = 2/(t+ 2), it holds that

λt−1(1− λt)
λt

=
t

t+ 1
, and gt = −

t∑
j=1

j

t+ 1
Z>qj.

Consequently, with λt = 2/(t+ 2), the primal iterate defined by eq. (2.12) coincides with

the iterate given by Algorithm 2.1 with βt = t/(t+ 1).

Proof of Lemma 2.9. To prove eq. (2.13), we only need to show that gt defined by eq. (2.14)

satisfies

gt =
wt − wt+1

θt
+ Z>qt = −Z>

(
1

λt
νt − qt

)
.

It holds at t = 0 by definition, since λ0 = 1 and ν0 = q0. Moreover,

1

λt+1

νt+1 − qt+1 =
1− λt+1

λt+1

µt+1 =
1− λt+1

λt+1

(
νt + λt(qt+1 − qt)

)
=
λt(1− λt+1)

λt+1

(
1

λt
νt − qt

)
+
λt(1− λt+1)

λt+1

qt+1,

which coincides with the recursive definition of gt.

For λt = 2/(t+ 2), it can be verified directly that λt(1−λt+1)/λt+1 = (t+ 1)/(t+ 2). The

explicit expression of gt clearly holds when t = 0; for t ≥ 0,

gt+1 =
t+ 1

t+ 2

(
gt − Z>qt+1

)
= −t+ 1

t+ 2

t∑
j=1

j

t+ 1
Z>qj −

t+ 1

t+ 2
Z>qt+1 = −

t+1∑
j=1

j

t+ 2
Z>qj.

QED.

Next we prove the margin maximization rate. Similarly to the proof in the previous section,

we only need to show a lower bound on −ψ(−Zwt), since min1≤i≤n yi〈wt, xi〉 ≥ −ψ(−Zwt).
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Below is our lower bound on −ψ; its proof is based on a much finer analysis of dual Nesterov,

and uses both primal and dual smoothness.

Lemma 2.10. Let θt = 1 for all t ≥ 0, and λ0 = 1, then for all t ≥ 1,

−ψ(−Zwt) ≥ − ψ(−Zw0) +
1

2λ2
t−1

∥∥∥Z>µt∥∥∥2

2
+

t−1∑
j=1

1

2

(
1

λ2
j−1

− 1− λj
λ2
j

)∥∥∥Z>µj∥∥∥2

2

+
t−1∑
j=0

1

2λj

∥∥∥Z>νj∥∥∥2

2
.

Proof. Note that by eq. (2.9),

〈
∇φ(νt), νt − q∗

〉
≤ 1− λt

λt

(
φ(µt)− φ(νt)

)
+

1

λt

(
φ(νt)− φ(µt+1)

)
+ λt

(
Dψ∗(q

∗, qt)−Dψ∗(q
∗, qt+1)

)
= φ(νt) +

1− λt
λt

φ(µt)−
1

λt
φ(µt+1) + λt

(
Dψ∗(q

∗, qt)−Dψ∗(q
∗, qt+1)

)
.

Moreover,
〈
∇φ(νt), νt

〉
=
∥∥Z>νt∥∥2

2
= 2φ(νt), and thus

φ(νt)−
〈
∇φ(νt), q

∗〉 ≤ 1− λt
λt

φ(µt)−
1

λt
φ(µt+1) + λt

(
Dψ∗(q

∗, qt)−Dψ∗(q
∗, qt+1)

)
. (2.15)

Additionally, let pt = −Zwt, we have

Dψ∗(q
∗, qt)−Dψ∗(q

∗, qt+1) = ψ∗(q∗)− ψ∗(qt)− 〈pt, q∗ − qt〉

− ψ∗(q∗) + ψ∗(qt+1) + 〈pt+1, q
∗ − qt+1〉

= 〈pt, qt〉 − ψ∗(qt)− 〈pt+1, qt+1〉+ ψ∗(qt+1)− 〈pt − pt+1, q
∗〉

= ψ(pt)− ψ(pt+1)− 〈pt − pt+1, q
∗〉

= ψ(−Zwt)− ψ(−Zwt+1)− 1

λt
〈∇φ(νt), q

∗〉 (2.16)

Therefore eqs. (2.15) and (2.16) imply

ψ(−Zwt)− ψ(−Zwt+1) ≥ 1

λ2
t

φ(µt+1)− 1− λt
λ2
t

φ(µt) +
1

λt
φ(νt). (2.17)

Take the sum of eq. (2.17) from 0 to t− 1 finishes the proof. QED.

We also need the following bounds on ‖wt‖2.
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Lemma 2.11. Let θt = 1 for all t ≥ 0, then

t−1∑
j=0

γ∗

λj
≤ ‖wt‖2 ≤

t−1∑
j=0

1

λj

∥∥∥Z>νj∥∥∥
2
.

Proof. The upper bound follows immediately from the triangle inequality. For the lower

bound, recall u∗ denotes the maximum-margin classifier,

‖wt‖2 ≥ 〈wt, u∗〉 =
t−1∑
j=0

1

λj

〈
Z>νj, u

∗
〉

=
t−1∑
j=0

1

λj

〈
νj, Zu

∗〉
≥

t−1∑
j=0

γ∗

λj
,

since νj > 0, and
∥∥νj∥∥1

= 1, and 〈zi, u∗〉 ≥ γ∗ for all i. QED.

With Lemmas 2.10 and 2.11, we can prove Theorem 2.5. To illustrate the proof idea, we

first show a weaker result which gives 1/t2 convergence to γ∗/2; its proof is also part of the

full proof of Theorem 2.5, but much simpler.

Proposition 2.6 (weaker version of Theorem 2.5). With θt = 1 and λt = 2/(t+ 2), we have

min1≤i≤n yi〈wt, xi〉
‖wt‖2

≥ γ∗

2
− 4 ln(n)

γ∗(t+ 1)2
.

Proof. With λt = 2/(t + 2), it holds that 1
λ2j−1
− 1−λj

λ2j
≥ 0, therefore we can ignore the

‖Z>µj‖2 terms in Lemma 2.10 and get

−ψ(−Zwt) ≥ −ψ(−Zw0) +
t−1∑
j=0

1

2λj

∥∥∥Z>νj∥∥∥2

2
. (2.18)

Then eq. (2.18) and Lemma 2.11 imply

ψ(−Zw0)− ψ(−Zwt)
‖wt‖2

≥
∑t−1

j=0
1

2λj

∥∥Z>νj∥∥2

2∑t−1
j=0

1
λj

∥∥Z>νj∥∥2

≥ γ∗

2
, (2.19)

since
∥∥Z>νj∥∥2

≥ γ∗ (cf. Lemma 2.3). On the other hand, Lemma 2.11 and λt = 2/(t + 2)
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imply

‖wt‖2 ≥
t−1∑
j=0

γ∗

λj
≥ γ∗(t+ 1)2

4
,

and thus

ψ(−Zw0)

‖wt‖2

=
ln(n)

‖wt‖2

≤ 4 ln(n)

γ∗(t+ 1)2
. (2.20)

It then follows from eqs. (2.19) and (2.20) that

min1≤i≤n yi〈wt, xi〉
‖wt‖2

≥ −ψ(−Zwt)
‖wt‖2

≥ γ∗

2
− 4 ln(n)

γ∗(t+ 1)2
.

QED.

To prove the full version of Theorem 2.5, we need the following result which gives an

alternative characterization of wt using µj.

Lemma 2.12. Let θt = 1, we have

wt = Z>q0 − Z>qt +
t−1∑
j=0

1

λj
Z>µj+1,

and if λt = 2/(t+ 2), then

1

2λ2
t−1

∥∥∥Z>µt∥∥∥2

2
+

t−1∑
j=1

1

2

(
1

λ2
j−1

− 1− λj
λ2
j

)∥∥∥Z>µj∥∥∥2

2
≥

t−1∑
j=0

1

2λj

∥∥∥Z>µj+1

∥∥∥2

2
− 2 ln(n) ln(t+ 1).

Proof. Note that by construction, 1
λt
νt = 1−λt

λt
µt + qt, and thus

wt =
t−1∑
j=0

Z>

(
1

λj
νj

)
=

t−1∑
j=0

Z>

(
1− λj
λj

µj + qj

)

= Z>q0 − Z>qt +
t−1∑
j=0

Z>

(
1− λj
λj

µj + qj+1

)

= Z>q0 − Z>qt +
t−1∑
j=0

Z>

(
1

λj
µj+1

)
.
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On the second claim, note that

1

2λ2
t−1

∥∥∥Z>µt∥∥∥2

2
+

t−1∑
j=1

1

2

(
1

λ2
j−1

− 1− λj
λ2
j

)∥∥∥Z>µj∥∥∥2

2

≥ 1

2λ2
t−1

(γ∗)2 +
t−1∑
j=1

1

2

(
1

λ2
j−1

− 1− λj
λ2
j

)
(γ∗)2

=
t−1∑
j=0

1

2λj
(γ∗)2.

Moreover, Theorem 2.4 implies

1

2λj

(∥∥∥Z>µj+1

∥∥∥2

2
− (γ∗)2

)
≤ λjDψ∗(q

∗, q0) ≤ λj ln(n),

and thus

1

2λ2
t−1

∥∥∥Z>µt∥∥∥2

2
+

t−1∑
j=1

1

2

(
1

λ2
j−1

− 1− λj
λ2
j

)∥∥∥Z>µj∥∥∥2

2

≥
t−1∑
j=0

1

2λj
(γ∗)2

=
t−1∑
j=0

1

2λj

∥∥∥Z>µj+1

∥∥∥2

2
−

t−1∑
j=0

1

2λj

(∥∥∥Z>µj+1

∥∥∥2

2
− (γ∗)2

)

≥
t−1∑
j=0

1

2λj

∥∥∥Z>µj+1

∥∥∥2

2
− ln(n)

t−1∑
j=0

λj.

Finally, note that

t−1∑
j=0

λj =
t−1∑
j=0

2

j + 2
≤ 2 ln(t+ 1),

the proof is done. QED.

Now we can prove the full version of Theorem 2.5.

Proof of Theorem 2.5. Lemmas 2.10 and 2.12 imply

ψ(−Zw0)− ψ(−Zwt) ≥
t−1∑
j=0

1

2λj

∥∥∥Z>µj+1

∥∥∥2

2
+

t−1∑
j=0

1

2λj

∥∥∥Z>νj∥∥∥2

2
− 2 ln(n) ln(t+ 1).
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Therefore

min1≤i≤n yi〈wt, xi〉
‖wt‖2

≥ ψ(−Zw0)− ψ(−Zwt)
‖wt‖2

− ψ(−Zw0)

‖wt‖2

≥
∑t−1

j=0
1

2λj

∥∥Z>µj+1

∥∥2

2

‖wt‖2

+

∑t−1
j=0

1
2λj

∥∥Z>νj∥∥2

2

‖wt‖2

− 2 ln(n) ln(t+ 1)

‖wt‖2

− ln(n)

‖wt‖2

=

∑t−1
j=0

1
2λj

∥∥Z>µj+1

∥∥2

2

‖wt‖2

+

∑t−1
j=0

1
2λj

∥∥Z>νj∥∥2

2

‖wt‖2

−
ln(n)

(
1 + 2 ln(t+ 1)

)
‖wt‖2

. (2.21)

By the triangle inequality and the alternative characterization of wt in Lemma 2.12, we have

‖wt‖2 ≤
∥∥∥Z>q0

∥∥∥
2

+
∥∥∥Z>qt∥∥∥

2
+

t−1∑
j=0

1

λj

∥∥∥Z>µj+1

∥∥∥
2
≤ 2 +

t−1∑
j=0

1

λj

∥∥∥Z>µj+1

∥∥∥
2
.

Therefore∑t−1
j=0

1
2λj

∥∥Z>µj+1

∥∥2

2

‖wt‖2

≥
γ∗
∑t−1

j=0
1

2λj

∥∥Z>µj+1

∥∥
2

2 +
∑t−1

j=0
1
λj

∥∥Z>µj+1

∥∥
2

=
γ∗

2

1− 2

2 +
∑t−1

j=0
1
λj

∥∥Z>µj+1

∥∥
2


≥ γ∗

2

1− 2∑t−1
j=0

1
λj

∥∥Z>µj+1

∥∥
2

 ≥ γ∗

2

(
1− 8

γ∗(t+ 1)2

)
,

where we use
∑t−1

j=0
1
λj

∥∥Z>µj+1

∥∥
2
≥
∑t−1

j=0
γ∗

λj
≥ γ∗(t+1)2

4
. The remaining part of eq. (2.21)

can be handled in the same way as in the proof of Proposition 2.6. QED.

2.4 GENERAL DECREASING LOSSES

In previous sections, we focus on exponentially-tailed losses, such as the exponential loss

or logistic loss. Here we further consider general convex decreasing losses. We show that it is

still possible to characterize the implicit bias of GD, in terms of the regularization path: given

B ≥ 0, let w̄(B) denote the regularized solution with `2 norm bounded by B, concretely

w̄(B) := arg min
‖w‖2≤B

R̂(w), (2.22)
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and the regularization path denotes the curve followed by w̄ as B varies, meaning (w̄(B))B≥0.

(Choosing regularized rather than constrained solutions does not change our results regarding

the regularization path; moreover, in either case, the paths are algorithm-independent.)

Then under some mild conditions, we can show that limt→∞
wt
‖wt‖2 = limB→∞

w̄(B)
B

whenever

either limit exists.

We also show that different losses can induce very different implicit biases: exponentially-

tailed losses all converge to the maximum-margin direction, but polynomially-tailed losses

(cf. eq. (2.41)) may converge to a direction with a poor margin.

The contents in this section are based on [22].

2.4.1 Convergence of GD implies convergence of regularization path

In this subsection we show one direction of the equivalence, which holds in a more general

setting. Given a differentiable convex function f : Rd → R (not necessarily the empirical

risk) and an `2-norm bound B, the regularized solution is defined as

w̄(B) := arg min
‖w‖2≤B

f(w).

Note that w̄(B) is not unique in general, but we still have limB→∞ f
(
w̄(B)

)
= infw∈Rd f(w),

as is often the case when working with unregularized losses. In this paper we are particularly

interested in the case where the infimum of f is not attained. In that case w̄(B) is uniquely

defined, because the set of minimizers is convex and contained in the surface of the `2 ball,

and thus consists of exactly one point due to the curvature of `2 balls. A particular case is an

empirical risk with a nonempty separable part, which has been studies in previous sections.

We consider GD with a constant learning rate η. Its basic properties are summarized

in Lemma 2.13. If there exists a small step size which ensures decreasing function values,

then gradient descent on f can minimize the function value to its infimum; moreover, if the

infimum of f is not attained, then gradient descent iterates go to infinity.

Lemma 2.13. Given a convex differentiable function f : Rd → R, suppose the step size η

satisfies

f(wt+1)− f(wt) ≤ −
η

2

∥∥∇f(wt)
∥∥2

2
(2.23)

for all t ≥ 0. Then for any w ∈ Rd,

‖wt+1 − w‖2
2 ≤ ‖wt − w‖2

2 + 2η
(
f(w)− f(wt+1)

)
, (2.24)
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and thus ‖wt+1 − w‖2 ≤ ‖wt − w‖2 as long as f(w) ≤ f(wt+1). Consequently,

lim
t→∞

f(wt) = inf
w∈Rd

f(w),

which implies limt→∞ ‖wt‖2 =∞ if the infimum of f is not attained.

Proof. For any w ∈ Rd, it holds that

‖wt+1 − w‖2
2 =‖wt − w‖2

2 − 2η
〈
∇f(wt), wt − w

〉
+ η2

∥∥∇f(wt)
∥∥2

2

=‖wt − w‖2
2 + 2η

〈
∇f(wt), w − wt

〉
+ 2η · η

2

∥∥∇f(wt)
∥∥2

2

≤‖wt − w‖2
2 + 2η

(
f(w)− f(wt)

)
+ 2η

(
f(wt)− f(wt+1)

)
=‖wt − w‖2

2 + 2η
(
f(w)− f(wt+1)

)
. (2.25)

On the third line we use the convexity of f and eq. (2.23).

Since f(wt) is nondecreasing, limt→∞ f(wt) exists. Suppose limt→∞ f(wt) > infw∈Rd f(w).

Let w̄ ∈ Rd satisfy f(w̄) < limt→∞ f(wt)− ε for some ε > 0. It follows from eq. (2.25) that

‖wt+1 − w̄‖2
2 ≤ ‖wt − w̄‖

2
2 − 2ηε for any t, which implies ‖wt+1 − w̄‖2

2 → −∞, which is a

contradiction. QED.

Remark 2.1. The step size condition in eq. (2.23) holds if f is (globally) β-smooth and

η ≤ 1/β. There are also standard situations where f merely obeys local smoothness over

its sublevel sets; see for example Lemma 3.16, which considers empirical risk minimization

with the exponential loss.

Below is our main result of this section.

Theorem 2.7. Suppose f is convex, differentiable, bounded below by 0, and its infi-

mum is not attained, and the step size η satisfies eq. (2.23) and η ≤ 1/
(
2f(w0)

)
. If

limt→∞wt/‖wt‖2 = ū for some unit vector ū, then also limB→∞ w̄(B)/B = ū.

Proof. The first observation is that for any ε > 0, there exists B1(ε) > 0, such that for any

GD iterate wt with ‖wt‖2 > B1(ε), it holds that
∥∥∥ wt
‖wt‖2 − ū

∥∥∥
2
< ε. Given any ε, by our

assumption, there exists t1 such that
∥∥∥ wt
‖wt‖2 − ū

∥∥∥
2
< ε for any t > t1. It is enough to let

B1(ε) = max0≤t≤t1 ‖wt‖2 + 1.

Then we show that limB→∞
〈
w̄(B), ū

〉
→ ∞. If this is not true, then there exists a

constant C > 0 such that there exists arbitrarily large B with
〈
w̄(B), ū

〉
< C. Choose B2
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such that

B2 > max

{
5
(
‖w0‖2 + C + 1

)
, B1

(
1

4

)
+ 1

}
, and

〈
w̄(B2), ū

〉
< C.

Let t2 denote the first step such that ‖wt2‖2 > B2−1. Since B2−1 > ‖w0‖2, we have t2 > 0.

Moreover, the conditions of Theorem 2.7 (i.e., eq. (2.23) and η ≤ 1/
(
2f(w0)

)
) implies

‖wt2 − wt2−1‖2 = η
∥∥∇f(wt2−1)

∥∥
2

=

√
η2
∥∥∇f(wt2−1)

∥∥2

2

≤
√

2η
(
f(wt2−1)− f(wt2)

)
≤
√

2ηf(w0) ≤ 1.

(2.26)

Therefore from the definition of t2,

‖wt2‖2 ≤ ‖wt2−1‖2 + ‖wt2 − wt2−1‖2 ≤ B2 − 1 + 1 = B2.

By the definition of t2 and w̄(B2), we have f
(
w̄(B2)

)
≤ f(wt) for any t ≤ t2. Using eq. (2.24),

we can show that

∥∥wt2 − w̄(B2)
∥∥

2
≤
∥∥w0 − w̄(B2)

∥∥
2
. (2.27)

On one hand,

∥∥w0 − w̄(B2)
∥∥

2
≤ ‖w0‖2 +

∥∥w̄(B2)
∥∥

2
= ‖w0‖2 +B2. (2.28)

On the other hand,

∥∥wt2 − w̄(B2)
∥∥2

2
= ‖wt2‖2

2 +B2
2 − 2

〈
wt2 , w̄(B2)

〉
= ‖wt2‖2

2 +B2
2 − 2‖wt2‖2

〈
wt2
‖wt2‖2

, w̄(B2)

〉
> (B2 − 1)2 +B2

2 − 2‖wt2‖2

〈
wt2
‖wt2‖2

, w̄(B2)

〉
.

By the definition of t2 and B2, we have

‖wt2‖2 > B2 − 1 > B1

(
1

4

)
,
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and thus
∥∥∥ wt2
‖wt2‖2

− ū
∥∥∥

2
< 1/4. As a result,

〈
wt2
‖wt2‖2

, w̄(B2)

〉
<
〈
ū, w̄(B2)

〉
+

1

4
B2 < C +

1

4
B2,

and

∥∥wt2 − w̄(B2)
∥∥2

2
> (B2 − 1)2 +B2

2 − 2‖wt2‖2C −
1

2
‖wt2‖2B2

≥ (B2 − 1)2 +B2
2 − 2CB2 −

1

2
B2

2 >
3

2
B2

2 − 2CB2 − 2B2. (2.29)

Combining eqs. (2.27) to (2.29) gives

3

2
B2

2 − 2CB2 − 2B2 < ‖w0‖2
2 + 2‖w0‖2B2 +B2

2 ,

which implies

B2 < 4
(
‖w0‖2 + C + 1

)
+

2‖w0‖2
2

B2

< 4
(
‖w0‖2 + C + 1

)
+ ‖w0‖2 < 5

(
‖w0‖2 + C + 1

)
,

a contradiction.

Next we prove the claim that limB→∞ w̄(B)/B = ū. If this is not true, then there exists

δ > 0, such that there exists arbitrarily large B with
∥∥∥ w̄(B)

B
− ū
∥∥∥

2
> δ. Choose B4 such that

∥∥∥∥w̄(B4)

B4

− ū
∥∥∥∥

2

> δ, and
〈
w̄(B4), ū

〉
> B1

(
δ3

32

)
+ ‖w0‖2 + 1, and B4 >

32

δ3
.

Let B3 :=
〈
w̄(B4), ū

〉
. By geometric arguments, we have

∥∥w̄(B4)−B4ū
∥∥

2
−
∥∥w̄(B4)−B3ū

∥∥
2
>
B4δ

3

8
. (2.30)

Let t3 denote the first step such that ‖wt3‖2 > B3−1. Since B3−1 > ‖w0‖2, we have t3 > 0,

and similar to eq. (2.26) we can show that ‖wt3‖2 ≤ B3. Since B3− 1 > B1(δ3/32), we have∥∥∥ wt3
‖wt3‖2

− ū
∥∥∥

2
< δ3/32. As a result,

‖wt3 −B3ū‖2 ≤
∥∥wt3 − ‖wt3‖2ū

∥∥
2

+
∥∥‖wt3‖2ū−B3ū

∥∥
2

≤ ‖wt3‖2
δ3

32
+ 1 ≤ B3δ

3

32
+ 1 ≤ B4δ

3

32
+ 1. (2.31)
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Similarly, let t4 denote the first step such that ‖wt4‖2 > B4−1, we can show that ‖wt4‖2 ≤ B4,

and

‖wt4 −B4ū‖2 ≤
B4δ

3

32
+ 1. (2.32)

Combining eqs. (2.30) to (2.32) gives∥∥w̄(B4)− wt4
∥∥

2
−
∥∥w̄(B4)− wt3

∥∥
2

≥
∥∥w̄(B4)−B4ū

∥∥
2
− ‖B4ū− wt4‖2 −

∥∥w̄(B4)−B3ū
∥∥

2
− ‖B3ū− wt3‖2

≥ B4δ
3

8
− B4δ

3

32
− 1− B4δ

3

32
− 1

=
B4δ

3

16
− 2 > 0.

(2.33)

On the other hand, using eq. (2.30) and the triangle inequality,

B4 −B3 = ‖B4ū−B3ū‖2 ≥
∥∥w̄(B4)−B4ū

∥∥
2
−
∥∥w̄(B4)−B3ū

∥∥
2
>
B4δ

3

8
> 4,

and thus t4 > t3. Since ‖wt4‖2 ≤ B4, by the definition of t4 and w̄(B4), we have f
(
w̄(B4)

)
≤

f(wt) for any t ≤ t4. Since t3 < t4, eq. (2.24) implies
∥∥w̄(B4)− wt4

∥∥
2
≤
∥∥w̄(B4)− wt3

∥∥
2
,

which contradicts eq. (2.33). QED.

2.4.2 Convergence of regularization path implies Convergence of GD

From now on, we consider empirical risk minimization with binary classification. The

training data is still assumed to be linearly separable, and the loss function ` is assumed to

be convex, differentiable, and strictly decreasing to 0, such as the exponential loss or logistic

loss.

Linear separability and a strictly decreasing loss imply that the infimum of R̂ is not

attained, and thus Theorem 2.7 can be applied. However, we can show a stronger result:

the GD path converges to a direction if and only if the regularization path converges to (the

same) direction.

Theorem 2.8. Suppose the step size satisfies η ≤ 1/
(

2R̂(w0)
)

and

R̂(wt+1)− R̂(wt) ≤ −
η

2

∥∥∥∇R̂(wt)
∥∥∥2

2
(2.34)

for all t ≥ 0. Then limt→∞wt/‖wt‖2 exists if and only if limB→∞ w̄(B)/B exists, and when
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they exist they are the same.

The “if” part of Theorem 2.8 follows directly from Theorem 2.7. Next we give a proof of

the “only if” part of Theorem 2.8.

In the remainder of this section, we assume that limB→∞ w̄(B)/B = ū for some unit

vector ū, and define its margin as

γ̄ := min
1≤i≤n

yi〈ū, xi〉.

Also recall that γ∗ denotes the maximum margin and u∗ denotes the maximum-margin

solution. We first show that γ̄ is always positive.

Lemma 2.14. It holds that γ̄ ≥ (γ∗)2/(2n) > 0.

Remark 2.2. Lemma 2.14 gives a worst-case lower bound on γ̄ which holds for an arbitrary

decreasing loss. The proof technique can also be adapted to a specific loss function. For

example, if the loss function has a polynomial tail az−b, then limB→∞ w̄(B)/B exists (cf.

Proposition 2.9), and we can prove an Ω(n−1/(b+1)) lower bound on γ̄. Moreover, there exists

a dataset on which this lower bound is tight (cf. Proposition 2.10).

To prove Lemma 2.14, we first need the following result.

Lemma 2.15. It holds that

w̄(B)

B
= −

∇R̂
(
w̄(B)

)∥∥∥∇R̂ (w̄(B)
)∥∥∥

2

.

Conversely, if ‖w‖2 = B and w/B = −∇R̂(w)/
∥∥∥∇R̂(w)

∥∥∥
2
, then w = w̄(B).

Proof. By the first order optimality conditions, w = w̄(B) if and only if for any w′ with

‖w′‖2 ≤ B, it holds that 〈
∇R̂(w), w′ − w

〉
≥ 0. (2.35)

Since the infimum of R̂ is not attained, the gradient ∇R̂(w) is always nonzero. The struc-

ture of the `2 ball implies that eq. (2.35) holds if and only if ‖w‖2 = B and w/B =

−∇R̂(w)/
∥∥∥∇R̂(w)

∥∥∥
2
. QED.

Now we can prove Lemma 2.14.
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Proof of Lemma 2.14. Since w̄(B)/B → ū, the margin of w̄(B)/B converges to the margin of

ū. For large enoughB, the risk R̂
(
w̄(B)

)
≤ `(0)/n, which implies w̄(B)/B has a nonnegative

margin, and thus ū also has a nonnegative margin.

The proof of Lemma 2.14 is by contradiction. Given ε := (γ∗)2/(2n), suppose there exists

B0 > 0, such that for any B ≥ B0, the margin of w̄(B)/B is no larger than ε. We will derive

a contradiction, which implies that the margin of ū is at least (γ∗)2/(2n).

For any B > 0, Lemma 2.15 ensures that

−
〈
w̄(B)

B
,∇R̂

(
w̄(B)

)〉
=
∥∥∥∇R̂ (w̄(B)

)∥∥∥
2
. (2.36)

For simplicity, let zi := yixi. The left hand side of eq. (2.36) can be rewritten as

1

n

n∑
i=1

−`′
(〈
w̄(B), zi

〉)〈w̄(B)

B
, zi

〉
, (2.37)

while the right hand side of eq. (2.36) can be bounded below as

∥∥∥∇R̂ (w̄(B)
)∥∥∥

2
≥
〈
−∇R̂

(
w̄(B)

)
, u∗
〉
≥ 1

n

n∑
i=1

−`′
(〈
w̄(B), zi

〉)
γ∗. (2.38)

Let H denote the set of data points on which w̄(B)/B has margin larger than γ∗, and suppose

without loss of generality that w̄(B)/B achieves its minimum margin on z1. It follows from

eqs. (2.36) to (2.38) that

∑
zi∈H

−`′
(〈
w̄(B), zi

〉)(〈w̄(B)

B
, zi

〉
− γ∗

)
≥
∑
zi 6∈H

−`′
(〈
w̄(B), zi

〉)(
γ∗ −

〈
w̄(B)

B
, zi

〉)

≥ −`′
(〈
w̄(B), z1

〉)(
γ∗ −

〈
w̄(B)

B
, z1

〉)
.

(2.39)

Now consider B ≥ B0, which implies
〈
w̄(B)/B, z1

〉
≤ ε. Since ε < γ∗/2, and ‖zi‖2 ≤ 1,

eq. (2.39) implies −n`′(Bγ∗) ≥ −`′(Bε)(γ∗ − ε) ≥ −`′(Bε)γ∗/2, and thus

−`′(Bε)
−`′(Bγ∗)

≤ 2n

γ∗
(2.40)

for all B ≥ B0. Let α := B0ε = B0(γ∗)2/(2n), and λ := 2n/γ∗, then it means for all z ≥ α,

we have −`′(z) ≤ −`′(λz)λ.
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Therefore for any k ≥ 1, we have∫ αλk+1

αλk
−`′(z) dz =

∫ αλk

αλk−1

−`′(λy)λ dy ≥
∫ αλk

αλk−1

−`′(y) dy,

where eq. (2.40) is used. By induction, we have

∫ αλk+1

αλk
−`′(z) dz ≥

∫ αλ

α

−`′(z) dz > 0.

As a result, ∫ ∞
α

−`′(z) dz =∞,

which is contradiction, since
∫∞
α
−`′(z) dz = `(α) should be finite. QED.

Next we can show that to minimize the risk, it is almost optimal to move along the

direction of ū, thanks to its positive margin.

Lemma 2.16. Given any α > 0, there exists ρ(α) > 0, such that for any w with ‖w‖2 > ρ(α),

it holds that

R̂
(
(1 + α)‖w‖2ū

)
≤ R̂(w).

Proof of Lemma 2.16. Since limB→∞ w̄(B)/B = ū, we can choose ρ(α) large enough such

that for any w with ‖w‖2 > ρ(α), it holds that∥∥∥w̄ (‖w‖) /‖w‖2 − ū
∥∥∥ ≤ αγ̄.

In this case, for any 1 ≤ i ≤ n,

yi

〈
w̄
(
‖w‖2

)
, xi

〉
= yi

〈
w̄
(
‖w‖2

)
− ‖w‖2ū, xi

〉
+ yi

〈
‖w‖2ū, xi

〉
≤ αγ̄‖w‖2 + yi

〈
‖w‖2ū, xi

〉
≤ yi

〈
(1 + α)‖w‖2ū, xi

〉
.

As a result,

R̂
(
(1 + α)‖w‖2ū

)
≤ R̂

(
w̄
(
‖w‖2

))
≤ R̂(w).

QED.
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Now we are ready to prove the “only if” part of Theorem 2.8.

Proof of Theorem 2.8, the “only if” part. Given any ε ∈ (0, 1), let α satisfy 1/(1+α) = 1−ε
(i.e., let α = ε/(1− ε)). Since limt→∞ ‖wt‖2 =∞, we can choose a step t0 such that for any

t ≥ t0, it holds that ‖wt‖2 > max
{
ρ(α), 1

}
, where ρ is given by Lemma 2.16.

Now for any t ≥ t0, using the convexity of R̂ and Lemma 2.16, we have〈
∇R̂(wt), wt − (1 + α)‖wt‖2ū

〉
≥ R̂(wt)− R̂

(
(1 + α)‖wt‖2ū

)
≥ 0,

meaning 〈
∇R̂(wt), wt

〉
≥ (1 + α)‖wt‖2

〈
∇R̂(wt), ū

〉
.

Consequently,

〈wt+1 − wt, ū〉 =
〈
−η∇R̂(wt), ū

〉
≥
〈
−η∇R̂(wt), wt

〉 1

(1 + α)‖wt‖2

= 〈wt+1 − wt, wt〉
1

(1 + α)‖wt‖2

=
(1

2
‖wt+1‖2

2 −
1

2
‖wt‖2

2 −
1

2
‖wt+1 − wt‖2

2

) 1

(1 + α)‖wt‖2

.

On one hand, we have(
1

2
‖wt+1‖2

2 −
1

2
‖wt‖2

2

)
/‖wt‖2 ≥ ‖wt+1‖2 − ‖wt‖2.

On the other hand, using the step size condition in eq. (2.34), we have

‖wt+1 − wt‖2
2

2(1 + α)‖wt‖2

≤ ‖wt+1 − wt‖2
2

2
=
η2
∥∥∥∇R̂(wt)

∥∥∥2

2

2
≤ η

(
R̂(wt)− R̂(wt+1)

)
.

As a result,

〈wt − wt0 , ū〉 ≥
‖wt‖2 − ‖wt0‖2

1 + α
− ηR̂(wt0) = (1− ε)

(
‖wt‖ − ‖wt0‖2

)
− ηR̂(wt0),

meaning 〈
wt
‖wt‖2

, ū

〉
≥ 1− ε+

〈wt0 , ū〉 − (1− ε)‖wt0‖2 − ηR̂(wt0)

‖wt‖2

.
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Consequently,

lim inf
t→∞

〈
wt
‖wt‖2

, ū

〉
≥ 1− ε.

Since ε is arbitrary, we get wt/‖wt‖2 → ū. QED.

2.4.3 Applications

Here we briefly review some applications of Theorem 2.8; the detailed proofs can be found

in [22].

Theorem 2.8 says that the GD path and regularization path converge to the same direction

if either of them converges to a direction. Moreover, the regularization path is independent

of the optimization algorithm, and thus easier to study. Here are some examples where

w̄(B)/B converges.

A classical example is that if the loss has an exponential tail, then the regularization path

converges to the maximum-margin direction (see [46], for the case of `1 regularization). It

turns out that this is also true if the loss has a polynomial tail.

Proposition 2.9 ([22], Proposition 11). If for some a, b > 0,

lim
z→∞

−`′(z)

az−b
= 1, (2.41)

then limB→∞ w̄(B)/B exists.

Moreover, it is indeed possible for a polynomial-tailed loss to induce a sub-optimal margin.

Proposition 2.10 ([22], Proposition 12). For any b > 0, consider a loss function ` which

equals z−b for z ≥ 1. There exists a dataset on which the maximum margin is a universal

constant, while the regularization path with ` converges to a direction which has margin

Θ(n−1/(b+1)).

Finally, Figure 2.1 gives some empirical results.

2.5 ADDITIONAL RELATED WORK

The first concrete studies showing an implicit bias of descent methods were for the `1-

regularized case. Coordinate descent, when paired with the exponential loss, is implicitly
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Figure 2.1: Behavior of gradient descent and regularization path for three losses: the ex-
ponential loss exp(−z), and two polynomially-tailed losses (1 + z)−1 and (1 + z)−2 (with a
quadratic extension along z < 0 for smoothness). The data has one negative (red) point
cloud, and two positive (blue) point clouds; the upper positive cloud pulls the predictors
trained with polynomially-tailed losses away from the maximum-margin direction, which
points straight to the right.

biased towards `1-regularized solutions. This observation is the result of separate lines of

work on descent methods and on regularization methods. On one hand, AdaBoost was

shown to exhibit positive margins, meaning its predictions are not only correct, but in a

certain sense robust [47]; indeed, with some further care on the descent step sizes, AdaBoost

finds maximum-margin solutions [18, 48]. On the other hand, the `1-regularized solutions

also converge to maximum-margin solutions as regularization strength is taken to 0 [46, 49].

On the implicit bias, [50] characterized the implicit bias of many other algorithms, such

as mirror descent and natural gradient descent. [51] proved margin maximization for SGD.

[52] also considered the relationship between GD iterates and regularization path, however

they either focus on strongly convex objectives or margin-maximizing losses such as the

exponential loss. [53, 54] analyzed the implicit bias in the adversarial training setting. [55]

showed that momentum SGD and Adam also maximize the margin.
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Chapter 3: Linear classifiers with general data

In the previous chapter, we focus on linear separable data. In this chapter, we will consider

general data that may not be linearly separable.

First, in the distributional setting, we will consider the agnostic learning problem, where

the optimal linear classifier can achieve a zero-one risk of OPT > 0, and our goal is to compete

with OPT. Previously, for a certain broad class of “well-behaved” distributions, [24] proved

an Ω̃(OPT) lower bound, while [25] proved an Õ
(√

OPT
)

upper bound. In Section 3.1, we

close this gap by constructing a well-behaved distribution on which the global minimizer

of the logistic risk only achieves Ω
(√

OPT
)

zero-one risk (cf. Theorem 3.1), matching the

upper bound in [25]. On the other hand, we also show that we can overcome the Ω(
√

OPT)

lower bound for logistic loss simply at the cost of one additional convex optimization step

with the ReLU loss and attain Õ(OPT) zero-one risk (cf. Theorem 3.2). This two-step

convex optimization algorithm is simpler than previous methods obtaining this guarantee,

all of which require solving O
(
log(1/OPT)

)
minimization problems.

Second, we characterize the implicit bias of GD for general training data in Section 3.2.

We show that the GD iterates are biased to follow a unique ray defined by the data: on

the one hand, the direction of this ray is the maximum-margin predictor of a maximal

linearly-separable subset of the data, and GD iterates converge to this ray in direction. On

the other hand, this ray does not pass through the origin in general, and its offset is the

bounded global optimum of the risk over the remaining data, and GD recovers this offset.

This decomposition of training set is described formally in Theorem 3.3, while the implicit

bias result is stated in Theorem 3.5.

3.1 AGNOSTIC LEARNING WITH THE LOGISTIC AND RELU LOSS

As before, we assume there is an unknown distribution P over Rd × {−1,+1} to which

we have access in the form of independent and identically distributed samples drawn from

P . Our goal is to compete with a linear classifier ū that achieves the optimal zero-one risk

of OPT > 0 over P . Alternatively, we can think that the labels of the examples are first

generated by ū, and then an OPT fraction of the labels are adversarially corrupted.

A very natural heuristic for solving the problem is to use logistic regression. However, the

analysis of logistic regression for this problem is still largely incomplete, even though it is one

of the most fundamental algorithms in machine learning. One reason for this is that it can

return extremely poor solutions in the worst case: [56] showed that the minimizer of logistic
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risk may attain a zero-one risk of 1−OPT on an adversarially-constructed distribution.

As a result, much attention has been devoted to certain “well-behaved” distributions

(see Assumption 3.1 for a subset of these conditions), for which much better results can be

obtained. However, even under the “well-behaved” conditions, for any convex, nonincreasing,

and nonconstant loss function, [24] proved an Ω
(
OPT ln(1/OPT)

)
lower bound for log-

concave marginals and an Ω
(
OPT1−1/s

)
lower bound for s-heavy-tailed marginals. On the

positive side, [25] assumed Px satisfies a “soft-margin” condition: for anti-concentrated

marginals such as isotropic log-concave marginals, this assumes Pr
(∣∣〈ū, x〉∣∣ ≤ γ

)
= O(γ) for

any γ > 0. For sub-exponential distributions with soft-margins, they proved an Õ
(√

OPT
)

upper bound for gradient descent on the logistic loss, which can be improved to O
(√

OPT
)

for bounded distributions. Note that these upper bounds and the lower bounds in [24] do

not match: if Px is sub-exponential, then [24] only gave an Ω̃(OPT) lower bound, while if

Px is s-heavy-tailed, then the upper bound in [25] becomes worse.

Here we first construct a distribution Q over R2 × {−1,+1}, and prove a lower bound

for logistic regression that matches the upper bound in [25], thereby closing the gap in

[24, 25] (cf. Theorem 3.1). On the other hand, we describe a simple two-phase algorithm

that achieves Õ
(
OPT

)
error for general well-behaved distributions (cf. Theorem 3.2). Our

two-phase algorithm involves logistic regression followed by SGD with the ReLU loss (i.e.,

the perceptron algorithm) with a restricted domain and warm start. Our algorithm is simple

and sample-efficient: the output is guaranteed to have O
(
OPT · ln(1/OPT) + ε

)
zero-one

risk using only Õ(d/ε2) samples. By contrast, [24] designed a nonconvex algorithm that

achieves O(OPT + ε) risk, but they need Õ(d/ε4) samples; other prior algorithms achieving

O(OPT + ε) error also involve solving multiple rounds of convex loss minimization [23, 57].

The contents in this section is based on [26]. In this paper, we also proved an Õ(OPT)

upper bound for logistic regression under a radially-Lipschitz condition; it is omitted here.

Additional related work. The problem of agnostic learning of halfspaces has a long and

rich history [58]. Here we survey the results most relevant to our work. It is well known that

in the distribution independent setting, even weak agnostic learning is computationally hard

[59, 60, 61]. As a result most algorithmic results have been obtained under assumptions on

the marginal distribution Px over the examples.

The work of [62] designed algorithms that achieve OPT + ε error for any ε > 0 in time

dpoly( 1
ε
) for isotropic log-concave densities and for the uniform distribution over the hyper-

cube. There is also recent evidence that removing the exponential dependence on 1/ε, even

for Gaussian marginals is computationally hard [63, 64, 65].

As a result, another line of work aims to design algorithms with polynomial running time
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and sample complexity (in d and 1
ε
) and achieve an error of g(OPT) + ε, for g being a

simple function. Along these lines [66] designed a polynomial-time algorithm that attains

Õ(OPT1/3) + ε zero-one risk for isotropic log-concave distributions. [23] improved the upper

bound to O(OPT) + ε, using a localization-based algorithm. [67] further extended the algo-

rithm to more general s-concave distributions. The work of [57] provided a PTAS guarantee:

an error of (1 + η)OPT + ε for any desired constant η > 0 via an improper learner.

Previously, [68] showed that stochastic gradient descent on a two-layer leaky ReLU network

of any width achieves Õ
(√

OPT
)

zero-one risk, where OPT still denotes the best zero-one

risk of a linear classifier. On the other hand, [27] showed that a wide two-layer ReLU network

can even achieve the optimal Bayes risk, but their required width depends on a complexity

measure that may be exponentially large in the worst case. It is an interesting open problem

to see if a network with a reasonable width always reach a zero-one risk of O(OPT).

Additional notation. Given r > 0, let B(r) :=
{
x
∣∣‖x‖2 ≤ r

}
denote the Euclidean ball

with radius r. Given two nonzero vectors u and v, let ϕ(u, v) ∈ [0, π] denote the angle

between them.

Given a data distribution P over Rd×{−1,+1}, let Px denote the marginal distribution of

P on the feature space Rd. We will frequently need the projection of the input features onto

a two-dimensional subspace V ; in such cases, it will be convenient to use polar coordinates

(r, θ) for the associated calculations, such as parameterizing the density with respect to the

Lebesgue measure as pV (r, θ).

To be precise, given a nonincreasing loss function ` : R → R, let R` and R̂` denote the

corresponding population and empirical risk. We will focus on the logistic loss the ReLU

loss. For the logistic loss, let Rlog := R`log and R̂log := R̂`log for simplicity; for the ReLU loss,

let Rr := R`r and R̂r := R̂`r similarly. Recall that R0−1(w) := Pr(x,y)∼P
(
y 6= sign

(
〈w, x〉

))
denote the population zero-one risk.

3.1.1 An Ω
(√

OPT
)

lower bound for logistic loss

In this subsection, we construct a distribution Q over R2×{−1,+1} which satisfies stan-

dard regularity conditions in [24, 25], but the global minimizer w∗ of the population logistic

risk Rlog on Q only achieves a zero-one risk of Ω
(√

OPT
)
. Our focus on the global logistic

optimizer is motivated by the lower bounds from [24]; in particular, this means that the

large classification error is not caused by the sampling error.

The distribution Q has four parts Q1, Q2, Q3, and Q4, as described below. It can be

verified that if OPT ≤ 1/16, the construction is valid.
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Q1
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Figure 3.1: An illustration of Q when OPT = 1/16. Red areas denote positive examples,
while blue areas denote negative examples. The parts Q1, Q2 and Q3 are marked in the
figure, while Q4 is supported on the unit circle and marked by horizontal lines.

1. The feature distribution of Q1 consists of two squares: one has edge length
√

OPT
2

,

center
(√

2
2
,−
√

2
2

)
and density 1, with label −1; the other has edge length

√
OPT

2
,

center
(
−
√

2
2
,
√

2
2

)
, density 1, with label +1.

2. The feature distribution of Q2 is supported on([
0,
√

OPT
]
× [0, 1]

)
∪
([
−
√

OPT, 0
]
× [−1, 0]

)
with density 1, and the label is given by sign(x1).

3. Let q3 := 2
3

√
OPT(1 − OPT), then Q3 consists of two squares: one has edge length√

q3
2

, center (1, 0), density 1 and label +1, and the other has edge length
√

q3
2

, center

(−1, 0), density 1 and label −1.

4. The feature distribution of Q4 is the uniform distribution over the unit ball B(1) :={
x
∣∣‖x‖ ≤ 1

}
with density q4 := 1−OPT−2

√
OPT−q3

π
, and the label is given by sign(x1).

Note that the correct label is given by sign(x1) on Q2, Q3 and Q4; therefore ū := (1, 0) is

our ground-truth solution that is only wrong on Q1. Here is our lower bound result.

Theorem 3.1. Suppose OPT ≤ 1/100, and let Qx denote the marginal distribution of Q on

the feature space. It holds that Ex∼Qx [x] = 0, and Ex∼Qx [x1x2] = 0, and Ex∼Qx [x2
1−x2

2] = 0.

Moreover, the population logistic risk Rlog has a global minimizer w∗, and

R0−1(w∗) = Pr
(
y 6= sign

(
〈w∗, x〉

))
≥
√

OPT

60π
.
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We can normalize Qx to unit variance and make it isotropic. Then it is easy to verify Qx

satisfies the “well-behaved” conditions in [24], and the “soft-margin” and “sub-exponential”

conditions in [25]. Particularly, our lower bound matches the upper bound in [25].

Next we prove Theorem 3.1. First, we bound the density and support of Qx.

Lemma 3.1. If OPT ≤ 1
100

, then it holds that q3 ≤ 1
15

, and 1
2π
≤ q4 ≤ 1

π
. As a result, Qx is

supported on B(2) :=
{
x
∣∣‖x‖2 ≤ 2

}
with its density bounded by 2.

Proof. For q3, we have

q3 =
2

3

√
OPT(1−OPT) ≤ 2

3

√
OPT ≤ 2

3

1

10
=

1

15
.

For Q4, its total measure can be bounded as below:

1−OPT− 2
√

OPT− q3 ≥ 1− 1

100
− 2

10
− 1

15
≥ 1

2
,

therefore q4 ≥ 1
2π

. The upper bound q4 ≤ 1
π

is trivial.

On the support of Qx, note that for Q1, the largest `2 norm is given by

1 +

√
2

2

√
OPT

2
≤ 1 +

1

20
≤ 2.

For Q2, the largest `2 norm can be bounded by

1 +
√

OPT ≤ 1 +
1

10
≤ 2.

For Q3, the largest `2 norm can be bounded by

1 +

√
2

2

√
q3

2
≤ 1 +

1

2

√
1

15
≤ 2.

Finally, it is easy to verify that if OPT ≤ 1
100

, then Q1, Q2 and Q3 do not overlap, therefore

the density of Q is bounded by 1 + 1
π
≤ 2. QED.

The following fact is need in the proof of isotropy; its proof is straightforward and omitted.

Lemma 3.2. It holds that∫ a+ δ
2

a− δ
2

∫ b+ δ
2

b− δ
2

xy dy dx = abδ2, and

∫ a+ δ
2

a− δ
2

∫ b+ δ
2

b− δ
2

(x2 − y2) dy dx = (a2 − b2)δ2.
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Then we can prove that Q is isotropic up to a multiplicative factor.

Lemma 3.3. It holds that Ex∼Qx [x] = 0, and Ex∼Qx [x1x2] = 0, and Ex∼Qx
[
x2

1 − x2
2

]
= 0.

Proof. It follows from the symmetry of Q that Ex∼Qx [x] = 0.

To verify Ex∼Qx [x1x2] = 0, note that the expectation of x1x2 is 0 on Q3 and Q4, and thus

we only need to check Q1 and Q2. First, due to Lemma 3.2, we have

E(x,y)∼Q1 [x1x2] = −OPT

2
.

Additionally,

E(x,y)∼Q2 [x1x2] = 2

∫ √OPT

0

∫ 1

0

x1x2 dx2 dx1 =
OPT

2
.

Therefore Ex∼Qx [x1x2] = 0.

Finally, note that the expectation of x2
1 − x2

2 is 0 on Q1 due to Lemma 3.2, and also 0 on

Q4 due to symmetry; therefore we only need to consider Q2 and Q3. We have

E(x,y)∼Q2

[
x2

1 − x2
2

]
= 2

∫ √OPT

0

∫ 1

0

(
x2

1 − x2
2

)
dx2 dx1 =

2

3
OPT3/2 − 2

3

√
OPT = −q3.

Since E(x,y)∼Q3

[
x2

1 − x2
2

]
= q3 by Lemma 3.2, it follows that Ex∼Qx

[
x2

1 − x2
2

]
= 0. QED.

Next we prove the risk lower bound. We only need to show that ϕ(ū, w∗), the angle between

ū and w∗, is Ω
(√

OPT
)
, since it then follows that w∗ is wrong on an Ω

(√
OPT

)
fraction of

Q4, which is enough since Q4 accounts for more than half of the distribution Q. The first

step is to show that by moving along the direction of ū by a distance of Θ
(

1√
OPT

)
, we can

achieve a logistic risk of O
(√

OPT
)
. For simplicity, in the remaining part of this subsection,

we let R denote Rlog. For i = 1, 2, 3, 4, we also let Ri(w) := E(x,y)∼Qi
[
`log

(
y〈w, x〉

)]
, and

thereby R(w) :=
∑4

i=1Ri(w).

Lemma 3.4. Suppose OPT ≤ 1/100, let w̄ := (r̄, 0) where r̄ = 3√
OPT

, then Rlog(w̄) ≤
5
√

OPT.

Proof. We consider R1, R2, R3 and R4 respectively.

1. For Q1, note that the minimum of y〈w̄, x〉 is

−

(√
2

2
+

1

2

√
OPT

2

)
r̄ = −3

√
2

2

1√
OPT

− 3
√

2

4
.
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Because `log(z) ≤ −z + 1 when z ≤ 0, and OPT ≤ 1
100

, we have

R1(w̄) ≤ `log

(
−3
√

2

2

1√
OPT

− 3
√

2

4

)
·OPT ≤ 3

√
2

2

√
OPT +

(
3
√

2

4
+ 1

)
OPT

≤ 3
√

2

2

√
OPT +

(
3
√

2

4
+ 1

)
1

10

√
OPT

≤ 5
√

OPT

2
.

2. For Q2, we have

R2(w̄) = 2

∫ √OPT

0

∫ 1

0

`log(x1r̄) dx2 dx1 = 2

∫ √OPT

0

`log(x1r̄) dx1

≤ 2

∫ √OPT

0

exp(−x1r̄) dx1

=
2

r̄

(
1− exp

(
−r̄
√

OPT
))
≤ 2

r̄
,

where we use `log(z) ≤ exp(−z).

3. For Q3, the minimum of y〈w̄, x〉 is(
1− 1

2

√
q3

2

)
r̄ ≥ 2r̄

3
,

where we use q3 ≤ 1
15

by Lemma 3.1. Further note that `log(z) ≤ 1/z when z > 0, we

have

R3(w̄) ≤ q3`log

(
2r̄

3

)
≤ 1/15

2r̄/3
≤ 1

10r̄
.

4. For Q4,

R4(w̄) =

∫ 1

0

∫ 2π

0

`log

(
rr̄
∣∣cos(θ)

∣∣) q4r dθ dr ≤ 1

π

∫ 1

0

∫ 2π

0

`log

(
rr̄
∣∣cos(θ)

∣∣) r dθ dr,

where we use q4 ≤ 1
π

from Lemma 3.1. Lemma A.1 then implies

R4(w̄) ≤ 1

π

∫ 1

0

8
√

2

r̄
dr =

8
√

2

πr̄
.
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Putting everything together, we have

R(w̄) = R1(w̄) +R2(w̄) +R3(w̄) +R4(w̄)

≤ 5
√

OPT

2
+

2

r̄
+

1

10r̄
+

8
√

2

πr̄

≤ 5
√

OPT

2
+

6

r̄
≤ 5
√

OPT.

QED.

Next we consider the global minimizer w∗ of Rlog, which exists since Rlog has bounded

sub-level sets. Let (r∗, θ∗) denote the polar coordinates of w∗. The plan is to assume

θ∗ ∈
[
−
√

OPT
30

,
√

OPT
30

]
, and derive a contradiction, which would finish the proof.

In our construction, Q3 and Q4 are symmetric with respect to the horizontal axis, and

they will induce the ground-truth solution. However, Q1 and Q2 are skew, and they will

pull w∗ above, meaning we actually have θ∗ ∈
[
0,
√

OPT
30

]
. The first observation is an upper

bound on r∗: if r∗ is too large, then the risk of w∗ over Q1 will already be larger than Rlog(w̄)

for w̄ constructed in Lemma 3.4, a contradiction.

Lemma 3.5. Suppose OPT ≤ 1/100 and θ∗ ∈
[
0,
√

OPT
30

]
, then r∗ ≤ 10√

OPT
.

Proof. Let

u :=

(√
2

2
,−
√

2

2

)
, and v :=

(√
2

2
− 1

2

√
OPT

2
,−
√

2

2
− 1

2

√
OPT

2

)
.

Let φ denote the angle between u and v, then

φ ≤ tan(φ) =

√
2

2

√
OPT

2
=

√
OPT

2
≤ 1

20
≤ π

24
,

and it follows that the angle between v and w∗ is bounded by

π

24
+
π

4
+

√
OPT

30
≤ π

24
+
π

4
+

π

24
=
π

3
.

Moreover, note that the maximum of y〈w∗, x〉 on Q1 is given by

−〈w∗, v〉 ≤ −r∗‖v‖ cos

(
π

3

)
≤ −r∗ cos

(
π

3

)
= −r

∗

2
.
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Additionally because `log(z) > −z, we have

R(w∗) ≥ R1(w∗) ≥ `log

(
−r
∗

2

)
·OPT >

r∗

2
·OPT.

If r∗ > 10√
OPT

, then R(w∗) > 5
√

OPT, which contradicts the definition of w∗ in light of

Lemma 3.4. Therefore r∗ ≤ 10√
OPT

. QED.

However, our next lemma shows that under the above conditions, the gradient of Rlog at

w∗ does not vanish, which contradicts the definition of w∗.

Lemma 3.6. Suppose OPT ≤ 1/100, then for any w = (r, θ) with 0 ≤ r ≤ 10√
OPT

and

0 ≤ θ ≤
√

OPT
30

, it holds that ∇Rlog(w) 6= 0.

Proof. Let w = (r, θ), where 0 ≤ r ≤ 10√
OPT

and 0 ≤ θ ≤
√

OPT
30

. We will consider the

projection of ∇R(w) onto the direction e2 := (0, 1), and show this projection cannot be 0.

1. For Q1, the gradient of this part has a negative inner product with e2, due to the

construction of Q1 and the fact `′log < 0.

2. For Q2, the inner product between e2 and the gradient of this part is given by

2

∫ √OPT

0

∫ 1

0

`′log(x1w1 + x2w2)x2 dx2 dx1. (3.1)

Note that x1w1 ≤ rx1, while

x2w2 = x2r sin (θ) ≤ rθ ≤ 10√
OPT

√
OPT

30
=

1

3
,

and that `′log is increasing, therefore

`′log(x1w1 + x2w2) ≤ `′log

(
rx1 + 1/3

)
.

We can then upper bound eq. (3.1) as follows:

eq. (3.1) ≤ 2

∫ √OPT

0

∫ 1

0

`′log

(
rx1 +

1

3

)
x2 dx2 dx1

=

∫ √OPT

0

`′log

(
rx1 +

1

3

)
dx1

=
1

r

(
`log

(
1

3
+ r
√

OPT

)
− `log

(
1

3

))
.
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Now we consider two cases. If r
√

OPT ≤ 2, then it follows from the convexity of `log

that

eq. (3.1) ≤ 1

r
`′log

(
1

3
+ r
√

OPT

)
r
√

OPT ≤ `′log(3)
√

OPT ≤ −
√

OPT

30
.

On the other hand, if r
√

OPT ≥ 2, then

eq. (3.1) ≤ 1

r

(
`log

(
7

3

)
− `log

(
1

3

))
≤
√

OPT

10

(
`log

(
7

3

)
− `log

(
1

3

))
≤ −
√

OPT

30
.

Therefore, it always holds that eq. (3.1) ≤ −
√

OPT
30

.

3. For Q3, the gradient of this part can have a positive inner product with e2. For

simplicity, let ρ := 1
2

√
q3
2

. To upper bound this inner product, it is enough to consider

the region given by

(
[1− ρ, 1 + ρ]× [−ρ, 0]

)
∪
(
[−1− ρ,−1 + ρ]× [0, ρ]

)
.

Moreover, note that y〈w, x〉 ≥ 0 on Q3, therefore `′log

(
y〈w, x〉

)
≥ −1

2
. Therefore the

inner product between e2 and the gradient of Q3 can be upper bounded by (note that

x2 ≤ 0 in the integral)

2

∫ 1+ρ

1−ρ

∫ 0

−ρ
−1

2
x2 dx2 dx1 = ρ3 =

√
q3

16
√

2
q3 ≤

√
1/15

16
√

2

2

3

√
OPT <

√
OPT

60
.

where we use q3 ≤ 1
15

by Lemma 3.1 and q3 ≤ 2
3

√
OPT by its definition.

4. For Q4, we further consider two cases.

(a) Consider the part of Q4 with polar angles in (−π
2

+ 2θ, π
2
) ∪ (π

2
+ 2θ, 3π

2
). By

symmetry, the gradient of this part is along the direction with polar angle π + θ,

and it has a negative inner product with e2.

(b) Consider the part of Q4 with polar angles in (−π
2
,−π

2
+ 2θ) ∪ (π

2
, π

2
+ 2θ). We

can verify that the gradient of this part has a positive inner product with e2;

moreover, since −1 < `′log < 0, this inner product can be upper bounded by

2

∫ 1

0

∫ 2θ

0

r′ cos(θ′)q4r
′ dθ′ dr′ = 2q4 ·

1

3
· sin(2θ) ≤ 4θ

3π
≤ 4

3π

√
OPT

30
<

√
OPT

60
,
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where we also use q4 ≤ 1
π

and sin(z) ≤ z for z ≥ 0.

As a result, item 3 and item 4(b) cannot cancel item 2, and thus ∇R(w) cannot be 0. QED.

Now we are ready to prove the risk lower bound of Theorem 3.1.

Proof of Theorem 3.1 risk lower bound. It is clear that R has bounded sub-level sets, and

therefore can be globally minimized. Let the polar coordinates of the global minimizer be

given by (r∗, θ∗), where |θ∗| ≤ π. Assume that θ∗ ∈
[
−
√

OPT
30

,
√

OPT
30

]
; due to Q1 and Q2,

it actually follows that θ∗ ∈
[
0,
√

OPT
30

]
. Lemma 3.5 then implies r∗ ≤ 10√

OPT
, and then

Lemma 3.6 implies ∇R(w∗) 6= 0, a contradiction.

It then follows that w∗ is wrong on a θ∗

π
portion of Q4. Since the total measure of Q4 is

more than half due to Lemma 3.1, we have

R0−1(w∗) ≥ 1

2

θ∗

π
≥
√

OPT

60π
.

QED.

3.1.2 A general framework for upper bound analysis

In this subsection, we present a general framework for analyzing the zero-one risk upper

bound. In [26], we use this framework to show an Õ(OPT) upper bound for logistic regression

under a radially-Lipschitz condition; for simplicity, we do not include this analysis here.

However, this analysis framework is more versatile than that, as it can also recover the

Õ
(√

OPT
)

upper bound for general well-behaved distributions with the logistic loss, and

it can also handle the ReLU loss; we will use these results in the analysis of our two-phase

algorithm.

First, we introduce some standard assumptions on the marginal distribution Px. Because

of the lower bound for s-heavy-tailed distributions from [24], to get an Õ(OPT) zero-one

risk, we need to assume Px has a light tail. Following [25], we will either consider a bounded

distribution, or assume Px is sub-exponential as defined below (cf. [69, Proposition 2.7.1

and Section 3.4.4]).

Definition 3.1. We say Px is (α1, α2) sub-exponential for constants α1, α2 > 0, if for any

unit vector v and any t > 0,

Prx∼Px

(∣∣〈v, x〉∣∣ ≥ t
)
≤ α1 exp

(
−t/α2

)
.
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We also need the next assumption, which is part of the “well-behaved” conditions from

[24].

Assumption 3.1. There exist constants U,R > 0 and a function σ : R+ → R+, such that if

we project Px onto an arbitrary two-dimensional subspace V , the corresponding density pV

satisfies pV (r, θ) ≥ 1/U for all r ≤ R, and pV (r, θ) ≤ σ(r) for all r ≥ 0, and
∫∞

0
σ(r) dr ≤ U ,

and
∫∞

0
rσ(r) dr ≤ U .

Note that for a broad class of distributions including isotropic log-concave distributions,

the sub-exponential condition and Assumption 3.1 hold with α1, α2, U,R all being universal

constants.

Next we describe our analysis framework. We will consider certain ŵ, such that R`(ŵ)−
R`(w̄) is small, where w̄ := ‖ŵ‖2ū and ` ∈ {`log, `r}. For some concrete examples, ŵ can be

the global minimizer of R`, or some GD/SGD iterates whose excess risk is small. Our goal

is to show that R0−1(ŵ) is also small.

The first step is to express R`(ŵ) − R`(w̄) as the sum of three terms, and then bound

them separately. The first term is given by

R`(ŵ)−R`(w̄)− E
[
`
(

sign
(
〈w̄, x〉

)
〈ŵ, x〉

)
− `
(

sign
(
〈w̄, x〉

)
〈w̄, x〉

)]
, (3.2)

the second term is given by

E
[
`
(

sign
(
〈w̄, x〉

)
〈ŵ, x〉

)
− `
(

sign
(
〈ŵ, x〉

)
〈ŵ, x〉

)]
, (3.3)

and the third term is given by

E
[
`
(

sign
(
〈ŵ, x〉

)
〈ŵ, x〉

)
− `
(

sign
(
〈w̄, x〉

)
〈w̄, x〉

)]
, (3.4)

where the expectations are taken over Px.

We first bound term (3.2), which is the approximation error of replacing the true label

y with the label given by ū. Since `(−z) − `(z) = z for the logistic loss and ReLU loss, it

follows that

term (3.2) = E
[
1y 6=sign(〈w̄,x〉) · y〈w̄ − ŵ, x〉

]
.

The approximation error can be bounded as below, using the tail bound on Px and the fact

R0−1(w̄) = OPT.
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Lemma 3.7. For ` ∈ {`log, `r}, if ‖x‖2 ≤ B almost surely,

∣∣term (3.2)
∣∣ ≤ B‖w̄ − ŵ‖2 ·OPT.

If Px is (α1, α2)-sub-exponential, then

∣∣term (3.2)
∣∣ ≤ (1 + 2α1)α2‖w̄ − ŵ‖2 ·OPT · ln(1/OPT).

Proof. Note that for both the logistic loss and the ReLU loss, it holds that `(−z)− `(z) = z,

therefore

term (3.2) = E(x,y)∼P

[
1y 6=sign(〈w̄,x〉) · y〈w̄ − ŵ, x〉

]
, (3.5)

It then follows from the triangle inequality that

∣∣term (3.2)
∣∣ ≤ E(x,y)∼P

[
1y 6=sign(〈w̄,x〉)

∣∣〈w̄ − ŵ, x〉∣∣]
Now we can invoke Lemma A.2 with w = w̄ and w′ = w̄ − ŵ to prove Lemma 3.7. QED.

Next we bound term (3.3).

Lemma 3.8. Under Assumption 3.1, for ` ∈ {`log, `r},

term (3.3) ≥ 4R3

3Uπ2
‖ŵ‖2ϕ(ŵ, w̄)2.

Proof of Lemma 3.8. Note that in term (3.3), we only care about 〈ŵ, x〉 and 〈w̄, x〉, therefore

we can focus on the two-dimensional space spanned by w̄ and ŵ. Let ϕ denote the angle

between w̄ and ŵ. Without loss of generality, we can consider the following graph, where

we put w̄ at angle 0, and ŵ at angle ϕ.

w̄

ŵ

ϕ
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We divide the graph into four parts given by different polar angles: (i) (−π
2
,−π

2
+ ϕ), (ii)

(−π
2

+ϕ, π
2
), (iii) (π

2
, π

2
+ϕ), and (iv) (π

2
+ϕ, 3π

2
). Note that term (3.3) is 0 on parts (ii) and

(iv), therefore we only need to consider parts (i) and (iii):

term (3.3) = E(i) and (iii)

[
`
(

sign
(
〈w̄, x〉

)
〈ŵ, x〉

)
− `
(

sign
(
〈ŵ, x〉

)
〈ŵ, x〉

)]
= E(i) and (iii)

[
−sign

(
〈w̄, x〉

)
〈ŵ, x〉

]
.

Here we use the fact that `(−z)− `(z) = z for both the logistic loss and the ReLU loss.

For simplicity, let p denote the density of the projection of Px onto the space spanned by

ŵ and w̄. Under Assumption 3.1, we have

term (3.3) = E(i) and (iii)

[
−sign

(
〈w̄, x〉

)
〈ŵ, x〉

]
=

∫ ∞
0

∫ −π
2

+ϕ

−π
2

−r‖ŵ‖2 cos(ϕ− θ)p(r, θ)r dθ dr

+

∫ ∞
0

∫ π
2

+ϕ

π
2

r‖ŵ‖2 cos(θ − ϕ)p(r, θ)r dθ dr

≥ 2

U

∫ R

0

∫ ϕ

0

r‖ŵ‖2 sin(θ)r dθ dr

=
2R3‖ŵ‖2

(
1− cos(ϕ)

)
3U

≥ 4R3‖ŵ‖2ϕ
2

3Uπ2
,

where we use the fact that 1− cos(ϕ) ≥ 2ϕ2

π2 for all ϕ ∈ [0, π]. QED.

Lastly, we consider term (3.4). Note that it is 0 for the ReLU loss `r, because `r(z) = 0

when z ≥ 0. For the logistic loss, term (3.4) can be bounded by O(1/‖ŵ‖2) in general as

showed below, but we can also give a tighter bound with an additional radially-Lipschitz

condition (see [26, Lemma 3.12] for more discussion).

Lemma 3.9. For ` = `r, term (3.4) is 0. For ` = `log, under Assumption 3.1,

∣∣term (3.4)
∣∣ ≤ 12U

‖ŵ‖2

.

Proof. For the ReLU loss, term (3.4) is 0 simply because `r(z) = 0 when z ≥ 0.

For the logistic loss, we first show that under Assumption 3.1, for any w ∈ Rd,

E
[
`log

(∣∣〈w, x〉∣∣)] ≤ 12U

‖w‖2

.
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Let v denote an arbitrary vector orthogonal to w, and let p denote the density of the

projection of Px onto the space spanned by w and v. Then we have

E
[
`log

(∣∣〈w, x〉∣∣)] =

∫ ∞
0

∫ 2π

0

`log

(
r‖w‖2

∣∣cos(θ)
∣∣) p(r, θ)r dθ dr.

Invoking Assumption 3.1, we have

E
[
`log

(∣∣〈w, x〉∣∣)] ≤ ∫ ∞
0

σ(r)

(∫ 2π

0

`log

(
r‖w‖2

∣∣cos(θ)
∣∣) r dθ

)
dr.

Lemma A.1 then implies

E
[
`log

(∣∣〈w, x〉∣∣)] ≤ ∫ ∞
0

σ(r)
8
√

2

‖w‖2

dr.

Then it follows from Assumption 3.1 that

E
[
`log

(∣∣〈w, x〉∣∣)] ≤ 8
√

2U

‖w‖2

≤ 12U

‖w‖2

.

Now we have

term (3.4) ≤ E
[
`log

(
sign

(
〈ŵ, x〉

)
〈ŵ, x〉

)]
= E

[
`log

(∣∣〈ŵ, x〉∣∣)] ≤ 12U

‖ŵ‖2

.

Similarly, we can show

−term (3.4) ≤ 12U

‖w̄‖2

=
12U

‖ŵ‖2

.

QED.

Lemmas 3.7 to 3.9 will be crucial in our analysis of the two-phase algorithm; they can also

recover the Õ
(√

OPT
)

upper bound showed in [25]. Here we briefly discuss the ideas; some

proof details are omitted, but they can be found in [26].

For simplicity, first let ŵ = w∗, the global optimizer of Rlog, and assume ‖x‖2 ≤ B almost

surely. For simplicity, let ϕ denote ϕ(ŵ, ū). Lemmas 3.7 to 3.9 imply

C1‖ŵ‖2ϕ
2 ≤ B‖w̄ − ŵ‖2 ·OPT +

C2

‖ŵ‖2

≤ B‖ŵ‖2ϕ ·OPT +
C2

‖ŵ‖2

,

where C1 = 4R3/(3Uπ2) and C2 = 12U . Now at least one of the following two cases is true:
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1. C1‖ŵ‖2ϕ
2 ≤ 3B‖ŵ‖2ϕ ·OPT, which implies ϕ = O(OPT);

2. C1‖ŵ‖2ϕ
2 ≤ 3C1/‖ŵ‖2, which implies ϕ = O(1/‖ŵ‖2).

Moreover, it follows from [26, Lemma 3.7] that ‖w∗‖2 = Ω
(

1√
OPT

)
, and thus it always holds

that ϕ = O
(√

OPT
)
. Finally, we can get a zero-one risk bound by invoking the next result,

which is basically [24, Claim 3.4].

Lemma 3.10. Under Assumption 3.1,

R0−1(ŵ)−R0−1(w̄) ≤ Pr
(

sign
(
〈ŵ, x〉

)
6= sign

(
〈w̄, x〉

))
≤ 2Uϕ(ŵ, w̄).

Proof. Under Assumption 3.1, we have

Pr
(

sign
(
〈ŵ, x〉

)
6= sign

(
〈w̄, x〉

))
≤ 2ϕ(ŵ, w̄)

∫ ∞
0

σ(r)r dr ≤ 2Uϕ(ŵ, w̄).

QED.

Now for projected GD, we can obtain a similar guarantee as presented below. The proof

is similar to the above analysis for w∗, but we also need to handle the optimization and

generalization error of project GD; the proof details can be found on [26]. We present the

bound in terms of the angle instead of zero-one risk for later application in the two-phase

algorithm.

Lemma 3.11. Given the target error ε ∈ (0, 1) and the failure probability δ ∈ (0, 1/e),

consider projected GD

wt+1 := ΠB(1/
√
ε)

[
wt − η∇R̂log(wt)

]
.

If ‖x‖2 ≤ B almost surely, then with η = 4/B2, using O
(

(B+1)2 ln(1/δ)
ε2

)
samples and O

(
B2

ε3/2

)
iterations, with probability 1− δ, projected GD outputs wt with

ϕ(wt, ū) = O
(√

OPT + ε
)
.

If Px is (α1, α2)-sub-exponential, then with η = Θ̃(1/d), using Õ
(
d ln(1/δ)3

ε2

)
samples and

Õ
(
d ln(1/δ)2

ε3/2

)
iterations, with probability 1− δ, projected GD outputs wt with

ϕ(wt, ū) = O
(√

OPT · ln(1/OPT) + ε
)
.
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3.1.3 An Õ(OPT) upper bound with ReLU loss

Note that in the analysis for the logistic loss presented in the previous subsection, we

can only get an Õ
(√

OPT
)

upper bound because of term (3.4). However, as noted in

Lemma 3.9, for the ReLU loss, term (3.4) is conveniently 0, which seems to suggest that we

may overcome the Ω
(√

OPT
)

lower bound via the ReLU loss. However, note that we cannot

simply optimize the ReLU risk Rr, since 0 is already a global minimizer of Rr. Instead, in

our two-phase algorithm, we will first run logistic regression, and then run SGD with the

ReLU loss on a restricted domain on which the norm is bounded below by 1.

Let

D :=
{
w ∈ Rd

∣∣∣〈w, v〉 ≥ 1
}
, (3.6)

the two-phase algorithm is described as below (the parameters η, T , etc. in this subsection

are all chosen for the second phase):

1. Run projected GD under the settings of Lemma 3.11, and find a unit vector v such that

ϕ(v, ū) is O
(√

OPT + ε
)

for bounded distributions, or O
(√

OPT · ln(1/OPT) + ε
)

for

sub-exponential distributions.

2. Run projected SGD over the domain D defined in eq. (3.6) starting from w0 := v: at

step t, we sample (xt, yt) ∼ P , and let

wt+1 := ΠD

[
wt − η`′r

(
yt〈wt, xt〉

)
ytxt

]
. (3.7)

where we make the convention that `′r(0) = −1.

We show the following upper bound.

Theorem 3.2. Given the target error ε ∈ (0, 1/e), suppose Assumption 3.1 holds.

1. For bounded distributions, with η = Θ(ε), for all T = Ω(1/ε2),

E
[

min
0≤t<T

R0−1(wt)

]
= O(OPT + ε).

2. For sub-exponential distributions, with η = Θ
(

ε
d ln(d/ε)2

)
, for all T = Ω

(
d ln(d/ε)2

ε2

)
,

E
[

min
0≤t<T

R0−1(wt)

]
= O(OPT · ln(1/OPT) + ε).

We prove Theorem 3.2 in the following. We will first handle the bounded case, and then

consider the sub-exponential case.
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Bounded distributions. Let r̄ := 1/〈v, ū〉, and thus r̄ū ∈ D. At step t, we have

‖wt+1 − r̄ū‖2
2 ≤ ‖wt − r̄ū‖2

2 − 2η
〈
`′r
(
yt〈wt, xt〉

)
ytxt, wt − r̄ū

〉
+ η2`′r

(
yt〈wt, xt〉

)2 ‖xt‖2
2.

(3.8)

Define

M(w) := E(x,y)∼P

[
−`′r

(
y〈w, x〉

)]
= R0−1(w).

Taking expectation of eq. (3.8) w.r.t. (xt, yt), and note that ‖x‖2 ≤ B almost surely and

(`′r)
2 = −`′r, we have

E
[
‖wt+1 − r̄ū‖2

2

]
− ‖wt − r̄ū‖2

2 ≤ −2η
〈
∇Rr(wt), wt − r̄ū

〉
+ η2B2M(wt)

≤ −2η
(
Rr(wt)−Rr(r̄ū)

)
+ η2B2M(wt). (3.9)

To continue, we first prove the following bound on Rr(ū).

Lemma 3.12. If ‖x‖2 ≤ B almost surely, then Rr(ū) ≤ B · OPT, while if Px is (α1, α2)-

sub-exponential, then Rr(ū) ≤ (1 + 2α1)α2 ·OPT · ln(1/OPT).

Proof. Note that

Rr(ū) = E(x,y)∼P

[
`r

(
y〈ū, x〉

)]
= E(x,y)∼P

[
1sign(〈ū,x〉6=y)

∣∣〈ū, x〉∣∣] .
It then follows from Lemma A.2 that if ‖x‖2 ≤ B almost surely, then

Rr(ū) ≤ B ·OPT,

while if Px is (α1, α2)-sub-exponential, then

Rr(ū) ≤ (1 + 2α1)α2 ·OPT · ln
(

1

OPT

)
.

QED.

Next we show the following key lemma, which follows from Lemmas 3.7 to 3.9, and the

homogeneity of the ReLU loss `r.

Lemma 3.13. Suppose Assumption 3.1 holds. Consider an arbitrary w ∈ D, and let ϕ
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denote ϕ(w, ū). If ‖x‖2 ≤ B almost surely, then

Rr(r̄ū) ≤ Rr(‖w‖2ū) +O
(
(OPT + ε)2

)
and

Rr(w)−Rr(‖w‖2ū) ≥ 4R3

3Uπ2
‖w‖2ϕ

2 −B‖w‖2ϕ ·OPT.

If Px is (α1, α2)-sub-exponential, then

Rr(r̄ū) ≤ Rr(‖w‖2ū) +O
((

OPT · ln(1/OPT) + ε
)2)

and

Rr(w)−Rr(‖w‖2ū) ≥ 4R3

3Uπ2
‖w‖2ϕ

2 − (1 + 2α1)α2‖w‖2ϕ ·OPT · ln(1/OPT).

Proof. First assume ‖x‖2 ≤ B almost surely. Note that `r is positive homogeneous, and thus

for any positive constant c, we have Rr(cw) = cRr(w). Therefore, if r̄ ≤ ‖w‖2, then

Rr(r̄ū) =
r̄

‖w‖2

Rr(‖w‖2ū) ≤ Rr(‖w‖2ū).

If r̄ ≥ ‖w‖2, then

Rr(r̄ū) = Rr

(
‖w‖2ū

)
+Rr(ū)

(
r̄ − ‖w‖2

)
≤ Rr

(
‖w‖2ū

)
+Rr(ū) (r̄ − 1) ,

since ‖w‖2 ≥ 1 for all w ∈ D. Recall that

r̄ :=
1

〈v, ū〉
=

1

cos
(
ϕ(v, ū)

) ≤ 1

1− ϕ(v, ū)2/2
,

and therefore the first-phase of algorithm ensures r̄ = 1 + O(OPT + ε) for bounded distri-

butions, and r̄ = 1 + O
(
OPT · ln(1/OPT) + ε

)
for sub-exponential distributions. It then

follows that for bounded distributions,

Rr(r̄ū) ≤ Rr

(
‖wt‖2ū

)
+Rr(ū) ·O(OPT + ε)

≤ Rr

(
‖wt‖2ū

)
+B ·OPT ·O(OPT + ε)

= Rr

(
‖wt‖2ū

)
+O

(
(OPT + ε)2

)
,
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where we apply Lemma 3.12 at the end. It also follows directly from Lemmas 3.7 to 3.9 that

Rr(w)−Rr(‖w‖2ū) ≥ 4R3

3Uπ2
‖w‖2ϕ

2 −B
∥∥w − ‖w‖2ū

∥∥
2
·OPT

≥ 4R3

3Uπ2
‖w‖2ϕ

2 −B‖w‖2ϕ ·OPT.

The proof for the sub-exponential case is similar. QED.

Now we are ready to prove Theorem 3.2 for the bounded case.

Proof of Theorem 3.2, bounded distribution. Here we assume ‖x‖2 ≤ B almost surely. We

will show that under the conditions of Theorem 3.2, then

E
[

min
0≤t<T

ϕt

]
= O(OPT + ε), where ϕt := ϕ(wt, ū). (3.10)

Further invoking Lemma 3.10 finishes the proof.

We first restate eq. (3.9): at step t, after taking the expectation with respect to (xt, yt),

we have

E
[
‖wt+1 − r̄ū‖2

2

]
≤ ‖wt − r̄ū‖2

2 − 2η
(
Rr(wt)−Rr(r̄ū)

)
+ η2B2M(wt). (3.11)

First, Lemma 3.13 implies

Rr(wt)−Rr(r̄ū) ≥ Rr(wt)−Rr(‖wt‖2ū)−O
(
(OPT + ε)2

)
≥ 2C1‖wt‖2ϕ

2
t −B‖wt‖2ϕt ·OPT−O

(
(OPT + ε)2

)
,

where C1 := 2R3/(3Uπ2). Note that if ϕt ≤ B ·OPT/C1, then eq. (3.10) holds; therefore in

the following we assume

ϕt ≥
B

C1

·OPT, (3.12)

which implies

Rr(wt)−Rr(r̄ū) ≥ C1‖wt‖2ϕ
2
t −O

(
(OPT + ε)2

)
≥ C1ϕ

2
t −O

(
(OPT + ε)2

)
, (3.13)

since ‖w‖2 ≥ 1 for all w ∈ D.
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On the other hand, eq. (3.12) and Lemma 3.10 imply

M(wt) = R0−1(wt) ≤ OPT + 2Uϕt ≤
(
C1

B
+ 2U

)
ϕt.

Let

C2 :=
C1(

C1

B
+ 2U

)
B2

.

Note that if ϕt ≤ ε, then eq. (3.10) is true; otherwise we can assume ε ≤ ϕt, and let η = C2ε,

we have

ηB2M(wt) ≤ C2εB
2

(
C1

B
+ 2U

)
ϕt = C1εϕt ≤ C1ϕ

2
t . (3.14)

Now eqs. (3.11), (3.13) and (3.14) imply

E
[
‖wt+1 − r̄ū‖2

2

]
≤ ‖wt − r̄ū‖2

2 − 2ηC1ϕ
2
t + ηC1ϕ

2
t + η ·O

(
(OPT + ε)2

)
= ‖wt − r̄ū‖2

2 − ηC1ϕ
2
t + η ·O

(
(OPT + ε)2

)
.

Taking the expectation and average, we have

E

 1

T

∑
t<T

ϕ2
t

 ≤ ‖w0 − r̄ū‖2
2

ηC1T
+
O
(
(OPT + ε)2

)
C1

.

Note that

‖w0 − r̄ū‖2 = tan(ϕ0) = O
(√

OPT + ε
)
,

and also recall η = C2ε, we have

E

 1

T

∑
t<T

ϕ2
t

 ≤ O(OPT + ε)

C1C2εT
+
O
(
(OPT + ε)2

)
C1

.

Letting T = Ω(1/ε2), we have

E

 1

T

∑
t<T

ϕ2
t

 ≤ O
(
(OPT + ε)ε

)
+O

(
(OPT + ε)2

)
= O

(
(OPT + ε)2

)
,
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and thus eq. (3.10) holds. QED.

Sub-exponential distributions. Next we consider sub-exponential distributions. We

first prove the following bound on the square of norm.

Lemma 3.14. Suppose Px is (α1, α2)-sub-exponential. Given any threshold τ > 0, it holds

that

E
[
‖x‖2

21‖x‖2≥τ
]
≤ dα1

(
τ 2 + 2

√
dα2τ + 2dα2

2

)
exp

(
− τ√

dα2

)
.

Proof. First recall that

Pr
(
‖x‖2 ≥ τ

)
≤

d∑
j=1

Pr

(
|xj| ≥

τ√
d

)
≤ dα1 exp

(
− τ√

dα2

)
=: δ(τ).

Let µ(τ) := Pr
(
‖x‖2 ≥ τ

)
. Integration by parts gives

E
[
‖x‖2

21‖x‖2≥τ
]

=

∫ ∞
τ

r2 · (− dµ(r)) = τ 2µ(τ) +

∫ ∞
τ

2rµ(r) dr ≤ τ 2δ(τ) +

∫ ∞
τ

2rδ(r) dr.

Calculation gives

E
[
‖x‖2

21‖x‖2≥τ
]
≤ dα1

(
τ 2 + 2

√
dα2τ + 2dα2

2

)
exp

(
− τ√

dα2

)
.

QED.

Now we are ready to prove Theorem 3.2 for sub-exponential distributions.

Proof of Theorem 3.2, sub-exponential distributions. At step t, we have

‖wt+1 − r̄ū‖2
2 ≤ ‖wt − r̄ū‖2

2 − 2η
〈
`′r
(
yt〈wt, xt〉

)
ytxt, wt − r̄ū

〉
+ η2`′r

(
yt〈wt, xt〉

)2 ‖xt‖2
2

= ‖wt − r̄ū‖2
2 − 2η

〈
`′r
(
yt〈wt, xt〉

)
ytxt, wt − r̄ū

〉
− η2`′r

(
yt〈wt, xt〉

)
‖xt‖2

2,

(3.15)

where we use (`′r)
2 = −`′r. Next we bound E(xt,yt)

[
−`′r

(
yt〈wt, xt〉

)
‖xt‖2

2

]
.

Let τ :=
√
dα2 ln(d/ε). When ‖xt‖2 ≤ τ , we have

E
[
−`′r

(
yt〈wt, xt〉

)
‖xt‖2

21‖xt‖2≤τ

]
≤ τ 2M(wt) ≤ dα2

2M(wt) · ln(d/ε)2.
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On the other hand, when ‖xt‖2 ≥ τ , Lemma 3.14 implies

E
[
−`′r

(
yt〈wt, xt〉

)
‖xt‖2

21‖xt‖2≥τ

]
≤ E

[
‖xt‖2

21‖xt‖2≥τ
]

≤ dα1 ·O
(
d ln(d/ε)2

)
· ε
d

= O
(
dε ln(d/ε)2

)
,

where we also use ln(1/ε) > 1, since ε < 1/e. To sum up,

E(xt,yt)

[
−`′r

(
yt〈wt, xt〉

)
‖xt‖2

2

]
≤ Cd

(
M(wt) + ε

)
· ln(d/ε)2

for some constant C.

Now taking the expectation with respect to (xt, yt) on both sides of eq. (3.15), we have

E
[
‖wt+1 − r̄ū‖2

2

]
≤ ‖wt − r̄ū‖2

2 − 2η
(
Rr(wt)−Rr(r̄ū)

)
+ η2Cd

(
M(wt) + ε

)
· ln(d/ε)2.

(3.16)

Similarly to the bounded case, we will show that

E
[

min
0≤t<T

ϕt

]
= O

(
OPT · ln(1/OPT) + ε

)
, where ϕt := ϕ(wt, ū). (3.17)

First, Lemma 3.13 implies

Rr(wt)−Rr(r̄ū) ≥ Rr(wt)−Rr(‖wt‖2ū)−O
((

OPT · ln(1/OPT) + ε
)2
)

≥ 2C1‖wt‖2ϕ
2
t − C2‖wt‖2ϕt ·OPT · ln(1/OPT)

−O
((

OPT · ln(1/OPT) + ε
)2
)
,

where C1 := 2R3/(3Uπ2) and C2 = (1+2α1)α2. Note that if ϕt ≤ C2 ·OPT · ln(1/OPT)/C1,

then eq. (3.17) holds; therefore in the following we assume

ϕt ≥
C2

C1

·OPT · ln(1/OPT), (3.18)

which implies

Rr(wt)−Rr(r̄ū) ≥ C1‖wt‖2ϕ
2
t −O

((
OPT · (1/OPT) + ε

)2
)

≥ C1ϕ
2
t −O

((
OPT · ln(1/OPT) + ε

)2
)
, (3.19)
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since ‖w‖2 ≥ 1 for all w ∈ D.

On the other hand, for OPT ≤ 1/e, eq. (3.18) and Lemma 3.10 imply

M(wt) = R0−1(wt) ≤ OPT + 2Uϕt ≤
(
C1

C2

+ 2U

)
ϕt.

Let

C2 :=
C1(

C1

C2
+ 2U

)
C
.

Note that if ϕt ≤ ε, then eq. (3.17) is true; otherwise we can assume ε ≤ ϕt, and let

η = C2ε
d ln(d/ε)2

, we have

ηCd
(
M(wt) + ε

)
ln(d/ε)2 =

C2ε

d ln(d/ε)2
CdM(wt) · ln(d/ε)2 +

C2ε

d ln(d/ε)2
Cdε · ln(d/ε)2

≤ C2εC

(
C1

C2

+ 2U

)
ϕt + C2Cε

2

= C1εϕt +O
((

OPT · ln(1/OPT) + ε
)2
)

≤ C1ϕ
2
t +O

((
OPT · ln(1/OPT) + ε

)2
)
. (3.20)

Now eqs. (3.16), (3.19) and (3.20) imply

E
[
‖wt+1 − r̄ū‖2

2

]
≤ ‖wt − r̄ū‖2

2 − 2ηC1ϕ
2
t + ηC1ϕ

2
t + η ·O

((
OPT · ln(1/OPT) + ε

)2
)

= ‖wt − r̄ū‖2
2 − ηC1ϕ

2
t + η ·O

((
OPT · ln(1/OPT) + ε

)2
)
.

Taking the expectation and average, we have

E

 1

T

∑
t<T

ϕ2
t

 ≤ ‖w0 − r̄ū‖2
2

ηC1T
+
O
((

OPT · ln(1/OPT) + ε
)2
)

C1

.

Note that ‖w0 − r̄ū‖ = tan(ϕ0) = O
(√

OPT · ln(1/OPT) + ε
)
, and also recall η = C2ε

d ln(d/ε)2
,

we have

E

 1

T

∑
t<T

ϕ2
t

 ≤ O
(
OPT · ln(1/OPT) + ε

)
d ln(d/ε)2

C1C2εT
+
O
((

OPT · ln(1/OPT) + ε
)2
)

C1

.
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Letting T = Ω
(
d ln(d/ε)2

ε2

)
, we have

E

 1

T

∑
t<T

ϕ2
t

 ≤ O
(
OPT · ln(1/OPT) + ε

)
· ε+O

((
OPT · ln(1/OPT) + ε

)2
)

= O
((

OPT · ln(1/OPT) + ε
)2
)
,

and thus eq. (3.17) holds. QED.

3.2 CHARACTERIZATION OF THE IMPLICIT BIAS

In this section, we will characterize the implicit bias of GD on a general training set.

Specifically, we will show that GD, when applied to the task of logistic regression, outputs

iterates which are biased to follow a unique ray defined by the data. The direction of this

ray is the maximum-margin predictor of a maximal linearly separable subset of the data;

the GD iterates converge to this ray in direction. The ray does not pass through the origin

in general, and its offset is the bounded global optimum of the risk over the remaining data;

gradient descent recovers this offset at a rate O((ln t)2/
√
t).

This section is based on [17]. For simplicity, here we will often focus on the exponential

loss; however, the logistic loss was also handled in [17].

Additional notation. Recall that the training set is denoted by {(xi, yi)}ni=1, and for

simplicity we let zi := yixi. Assume ‖zi‖2 ≤ 1 without loss of generality, and collect them

into a matrix Z ∈ Rn×d whose i-th row is given by z>i . Given a loss function `, for any

positive integer k and any v ∈ Rk, let L(v) :=
∑k

i=1 `(vi), whereby R̂(w) := L(Zw)/n, with

gradient ∇R̂(w) := Z>∇L(Zw)/n. Note that we allow L to have varying input dimension,

which will be convenient in the following analysis.

As in Theorem 3.3, the matrix Z defines a unique division of Rd into a direct sum of

subspaces Rd = S ⊕ S⊥. The rows of Z are either within S or Sc (i.e., Rd \ S), and without

loss of generality reorder the examples (and permute the rows of Z) so that Z =
[
Zc
ZS

]
where the rows of ZS are within S and the rows of Zc are within Sc; tying this to the

earlier discussion, Zc is the maximal linearly separable part of the data, and ZS consists of

the remaining data. Furthermore, let ΠS and Π⊥ respectively denote orthogonal projection

onto S and S⊥, and define Z⊥ := Π⊥Zc for simplicity, where each row of Zc is orthogonally

projected onto S⊥.
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By this notation,

Π⊥∇(L ◦ Z)(w) = Π⊥

[
Zc
ZS

]>
∇L

([
Zc
ZS

]
w

)
= Π⊥

[
Zc
ZS

]> [ ∇L(Zcw)
∇L(ZSw)

]
=
[
Z⊥
0

]> [ ∇L(Zcw)
∇L(ZSw)

]
= Z>⊥∇L(Zcw),

which has made use of L at varying input dimensions.

GD here starts with w0 := 0, and thereafter set wj+1 := wj − ηj∇R̂(wj). It is convenient

to define γj :=
∥∥∥∇(ln R̂)(wj)

∥∥∥
2

=
∥∥∥∇R̂(wj)

∥∥∥
2
/R̂(wj) and η̂j := ηjR̂(wj), whereby

‖wt‖2 ≤
∑
j<t

ηj

∥∥∥∇R̂(wj)
∥∥∥

2
=
∑
j<t

η̂jγj.

3.2.1 Problem structure

In this subsection, we characterize the unique ray {v̄+ r · ū : r ≥ 0} to which GD iterates

are biased. To build towards this, first consider the following examples.

Figure 3.2: Separable.

Linearly separable. Consider the data

at right in Figure 3.2: a blue circle of pos-

itive points, and a red circle of negative

points. The data is linearly separable: there

exist vectors u ∈ Rd with positive margin,

meaning mini 〈u, xiyi〉 > 0. Taking any such

u and extending it to infinity will achieve 0

risk, but this is not what gradient descent chooses. Constraining u to have unit norm, a

unique maximum margin point ū = −e1 is obtained. The green gradient descent iterates

follow ū exactly.

Figure 3.3: Strongly convex.

Strong convexity. Now consider moving the cir-

cles of data in Figure 3.2 until they overlap, obtain-

ing Figure 3.3. This data is not linearly separable;

indeed, given any nonzero vector u ∈ Rd, there exist

data points incorrectly classified by u, and therefore

extending u indefinitely will cause the risk to also in-

crease to infinity. It follows that the risk itself is 0-coercive [70], and moreover strongly convex

over bounded subsets, with a unique optimum v̄. Gradient descent converges towards v̄.

71



Figure 3.4: Mixed data.

An intermediate setting. The preceding two set-

tings either had the circles overlapping, or far apart.

What if they are pressed together so that they touch

at the origin? Excluding the point at the origin, the

circles may still be separated with the maximum mar-

gin separator ū = −e1 from the linearly separable in-

stance Figure 3.2. This example is our first taste of the general ray {v̄+ r · ū : r ≥ 0}, albeit

still with some triviality: v̄ = 0. Specifically, ū is the maximum margin separator of all data

excluding the point at the origin; the risk in this instance is bounded below by `(0)/n, which

is the necessary error on the point at the origin; the global optimum for that single point is

v̄ = 0.

S

S⊥

v̄v̄ + r·ūwt

Figure 3.5: The general case.

The general case. Combining elements

from the preceding examples, the general

case may be characterized as follows; it ap-

pears in Figure 3.5, with all relevant objects

labeled. In the general case, the dataset

consists of a maximal linearly separable sub-

set Zc, with the remaining data falling into

a subset ZS over which the empirical risk

is strongly convex. Specifically, Zc is con-

structed with the following greedy procedure: for each example (xi, yi), include it in Zc if

there exists ui with 〈ui, xiyi〉 > 0 and minj
〈
uj, xjyj

〉
≥ 0. The aggregate u :=

∑
i∈Zc ui

satisfies 〈u, xiyi〉 > 0 for i ∈ Zc and 〈u, xiyi〉 = 0 otherwise. Therefore Zc can be strictly

separated by some vector u orthogonal to ZS; let ū denote the maximum margin separator

of Zc, which is also orthogonal to ZS.

Turning now to ZS, any vector v which is correct on some (xi, yi) ∈ ZS (i.e., 〈u, xiyi〉 > 0)

must also be incorrect on some other example (xj, yj) in ZS (i.e.,
〈
v, xjyj

〉
< 0); otherwise,

(xi, yi) would have been included in Zc! Consequently, as in Figure 3.3 above, the empirical

risk restricted to ZS is strongly convex, with a unique optimum v̄. The gradient descent

iterates follow the ray {v̄ + r · ū : r ≥ 0}, which means they are globally optimal along ZS,

and achieve zero risk and follow the maximum margin direction ū.

Turning back to the construction in Figure 3.5, the linearly separable data Zc is the two

red and blue circles, while ZS consists of data points on the vertical axis. The points in ZS

do not affect ū, and have been adjusted to move v̄ away from 0, where it rested in Figure 3.4.

The above constructions are made rigorous in the following Theorem 3.3; its proof follows
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the intuition above.

Theorem 3.3. The rows of Z can be uniquely partitioned into matrices (ZS, Zc), with

a corresponding pair of orthogonal subspaces (S, S⊥) where S = span(Z>S ) satisfying the

following properties.

1. (Strongly convex part.) If ` is twice continuously differentiable with `′′ > 0, and

` ≥ 0, and limz→∞ `(z) = 0, then L ◦ Z is strongly convex over compact subsets of S,

and L◦ZS admits a unique minimizer v̄ with infw∈Rd L(Zw) = infv∈S L(ZSv) = L(ZS v̄).

2. (Separable part.) If Zc is nonempty (and thus so is Z⊥), then Z⊥ is linearly separable.

The maximum margin is given by

γ := max
{

min
i

(Z⊥u)i : ‖u‖2 = 1
}

= min

{∥∥∥Z>⊥q∥∥∥
2

: q ≥ 0,
∑
i

qi = 1

}
> 0,

and the maximum margin solution ū is the unique optimum to the primal problem,

satisfying ū = Z>⊥ q̄/γ for every dual optimum q̄. If ` ≥ 0 and limz→∞ `(z) = 0, then

inf
w∈Rd

L(Zw) = L(ZS v̄) + lim
r→∞

L
(
Zc(v̄ + rū)

)
= L(ZS v̄).

Before proving Theorem 3.3, note the following result characterizing margin maximization

over S⊥, which can be showed by applying Lemma 2.3 to Z⊥.

Lemma 3.15. Suppose Z⊥ has nc > 0 rows and there exists u with Z⊥u > 0. Then

γ := max
{

min
i

(Z⊥u)i : ‖u‖2 = 1
}

= min

{∥∥∥Z>⊥q∥∥∥
2

: q ≥ 0,
∑
i

qi = 1

}
> 0.

Moreover there exists a unique nonzero primal optimum ū, and every dual optimum q̄ satisfies

ū = Z>⊥ q̄/γ.

The proof of Theorem 3.3 follows.

Proof of Theorem 3.3. Partition the rows of Z into Zc and ZS as follows. For each row i,

put it in Zc if there exists ui so that Zui ≥ 0 (coordinate-wise) and (Zui)i > 0; otherwise,

when no such ui exists, add this row to ZS. Define S := span(Z>S ), the linear span of the

rows of ZS. This has the following consequences.

• To start, S⊥ = span(Z>S )⊥ = ker(ZS) ⊇ ker(Z).
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• For each row i of Zc, the corresponding ui has ZSui = 0, since otherwise Zui ≥ 0

implies there would be a positive coordinate of ZSui, and this row should be in Zc

not ZS. Combining this with the preceding point, ui ∈ ker(ZS) = S⊥. Define ũ :=∑
i ui ∈ S⊥, whereby Zcũ > 0 and ZSũ = 0. Lastly, ũ ∈ ker(ZS) implies moreover that

Z⊥ũ = Zcũ > 0. As such, when Zc has a positive number of rows, Lemma 3.15 can be

applied, resulting in the desired unique ū = Z>⊥ q̄/γ ∈ S⊥ with γ > 0.

• S, S⊥, ZS, Zc, and ū are unique and constructed from Z, with no dependence on `.

• If Zc is empty, the proof is trivial, thus suppose Zc is nonempty. Since limz→∞ `(z) = 0,

0 ≤ inf
w∈Rd

L(Zcw) ≤ inf
w∈S⊥

L(Zcw) ≤ inf
u∈S⊥

L(Zcu) ≤ lim
r→∞

L(r · Zcū) = 0.

Since these inequalities start and end with 0, they are equalities, and consequently

infw∈Rd = infu∈S⊥ L(Zcu) = 0. Moreover,

inf
w∈Rd

L(Aw) ≤ inf
v∈S
u∈S⊥

(
L(ZS(u+ v) + L(Zc(u+ v))

)
= inf

v∈S

(
L(ZSv) + inf

u∈S⊥
L(Zc(u+ v))

)
≤
(

inf
v∈S

L(ZSv)

)
+

(
inf
u∈S⊥

L(Zcu)

)
=

(
inf
v∈S

L(ZSv)

)
≤ inf

w∈Rd
L(Aw).

which again is in fact a chain of equalities.

• For every v ∈ S with ‖v‖2 > 0, there exists a row a of ZS such that 〈a, v〉 < 0. To

see this, suppose contradictorily that ZSv ≥ 0. It cannot hold that ZSv = 0, since

v 6= 0 and ker(ZS) ⊆ S⊥. this means ZSv ≥ 0 and moreover (ZSv)i > 0 for some i.

But since Zū ≥ 0 and Zcū > 0, then for a sufficiently large r > 0, Z(v + rū) ≥ 0 and

(ZS(v + rū))i > 0, which means row i of ZS should have been in Zc, a contradiction.

• Consider any v ∈ S \{0}. By the preceding point, there exists a row a of ZS such that

〈a, v〉 < 0. Since `(0) > 0 (because `′′ > 0) and limz→∞ `(z) = 0, there exists r > 0

so that `(−r 〈a, v〉) = `(0)/2. By convexity, for any t > 0, setting α := r/(t + r) and

noting α 〈a, tv〉+ (1− α) 〈a,−rv〉 = 0,

α`(t 〈a, v〉) ≥ `(0)− (1− α)`(−r 〈a, v〉) =

(
1 + α

2

)
`(0),

thus `(t 〈a, v〉) ≥
(

1+α
2α

)
`(0) =

(
t+2r

2r

)
`(0), and

lim
t→∞

L(tAv)− L(0)

t
≥ lim

t→∞

`(t 〈a, v〉)− n`(0)

t
≥ lim

t→∞

`(0)

2r

(
(t+ 2r)− 2nr

t

)
> 0.
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Consequently, L ◦ Z has compact sublevel sets over S [70, Proposition B.3.2.4].

• Note ∇2L(v) = diag(`′′(v1), . . . , `′′(vn)). Moreover, since ker(Z) ⊆ S⊥, then the image

B0 := {Zv : v ∈ S, ‖v‖2 = 1} over the surface of the ball in S through Z is a collection

of vectors with positive length. Thus for any compact subset S0 ⊆ S,

inf
v1∈S0

v2∈S,‖v2‖2=1

v>2 ∇2(L ◦ A)(v1)v2 = inf
v1∈S0

v2∈S,‖v2‖2=1

(Av2)>∇2L(Av1)(Av2)

= inf
v1∈S0
v3∈B0

v>3 ∇2L(Av1)v3

≥ inf
v1∈S0
v3∈B0

‖v3‖2
2 min

i
`′′((v1)i) > 0,

the final inequality since the minimization is of a continuous function over a com-

pact set, thus attained at some point, and the infimand is positive over the domain.

Consequently, L ◦ Z is strongly convex over compact subsets of S.

• Since L ◦ Z is strongly convex over S and moreover has bounded sublevel sets over S,

it attains a unique optimum over S.

QED.

3.2.2 Risk convergence

In this subsection, we prove risk convergence guarantees for the exponential loss, which

will also be useful in the characterization of the implicit bias.

Note that the exponential loss is not globally smooth, but we can still use local smoothness

and prove the following result. The proof is based on the convergence guarantee for AdaBoost

[12]. Recall the definitions γj :=
∥∥∥∇(ln R̂)(wj)

∥∥∥
2

=
∥∥∥∇R̂(wj)

∥∥∥
2
/R̂(wj) and η̂j := ηjR̂(wj).

Lemma 3.16. Suppose ` is convex, |`′| ≤ `, `′′ ≤ `, and η̂j = ηjR̂(wj) ≤ 1. Then

R̂(wj+1) ≤ R̂(wj)− ηj

(
1− ηjR̂(wj)

2

)∥∥∥∇R̂(wj)
∥∥∥2

2
= R̂(wj)

(
1− η̂j(1− η̂j/2)γ2

j

)
and thus

R̂(wt) ≤ R̂(w0)
∏
j<t

(
1− η̂j(1− η̂j/2)γ2

j

)
≤ R̂(w0) exp

−∑
j<t

η̂j(1− η̂j/2)γ2
j

 .
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Additionally, ‖wt‖2 ≤
∑

j<t η̂jγj.

Next we prove Lemma 3.16. For convenience, for the rest of this subsection define w′ :=

w − η∇R̂(w) = w − ηZ>∇L(Zw)/n, and suppose throughout that ` is twice differentiable.

Lemma 3.17. For any w ∈ Rd,

R̂(w′) ≤ R̂(w)− η
∥∥∥∇R̂(w)

∥∥∥2

2
+
η2

2

∥∥∥∇R̂(w)
∥∥∥2

2
max
v∈[w,w′]

∑
i

`′′(Ziv)/n.

Proof. By Taylor expansion,

R̂(w′) ≤ R̂(w)− η
∥∥∥∇R̂(w)

∥∥∥2

2
+

1

2
max
v∈[w,w′]

∑
i

(Zi(w − w′))2`′′(Ziv)/n.

By Hölder’s inequality,

max
v∈[w,w′]

∑
i

(Zi(w − w′))2`′′(Ziv) ≤ max
v∈[w,w′]

∥∥Z(w − w′)
∥∥2

∞

∑
i

`′′(Ziv).

Since maxi ‖Zi‖2 ≤ 1,

∥∥Z(w − w′)
∥∥2

∞ = η2
∥∥∥Z∇R̂(w)

∥∥∥2

∞
= η2 max

i

〈
Zi,∇R̂(w)

〉2

≤ η2 max
i
‖Zi‖2

∥∥∥∇R̂(w)
∥∥∥2

2
≤ η2

∥∥∥∇R̂(w)
∥∥∥2

2
.

Thus

R̂(w′) ≤ R̂(w)− η
∥∥∥∇R̂(w)

∥∥∥2

2
+
η2

2

∥∥∥∇R̂(w)
∥∥∥2

2
max
v∈[w,w′]

∑
i

`′′(Ziv)/n.

QED.

Lemma 3.18. Suppose |`′|, `′′ ≤ ` and ` is convex. Then, for any w ∈ Rd,

max
v∈[w,w′]

∑
i

`′′(Ziv)/n ≤ max
{
R̂(w), R̂(w′)

}
.

Define η̂ := ηR̂(w) and suppose η̂ ≤ 1; then R̂(w′) ≤ R̂(w) and

R̂(w′) ≤ R̂(w)

1− η̂(1− η̂/2)

∥∥∥∇R̂(w)
∥∥∥2

2

R̂(w)2

 .
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Proof. Since `′′ ≤ ` and ` is convex,

max
v∈[w,w′]

∑
i

`′′(Ziv)/n ≤ max
v∈[w,w′]

∑
i

`(Ziv)/n = max
v∈[w,w′]

R̂(v) = max
{
R̂(w), R̂(w′)

}
.

Combining this, the choice of η, and Lemma 3.17,

R̂(w′) ≤ R̂(w)− η
∥∥∥∇R̂(w)

∥∥∥2

2
+
η2

2

∥∥∥∇R̂(w)
∥∥∥2

2
max

{
R̂(w), R̂(w′)

}
= R̂(w)−

η̂
∥∥∥∇R̂(w)

∥∥∥2

2

R̂(w)

1− η̂

2

max
{
R̂(w), R̂(w′)

}
R̂(w)

 .

Finally, suppose R̂(w′) > R̂(w); since η̂ ≤ 1 and |`′| ≤ ` and maxi ‖Zi‖2 ≤ 1,

R̂(w′)

R̂(w)
− 1 ≤

η̂
∥∥∥∇R̂(w)

∥∥∥2

2

R̂(w)2

(
η̂

2

R̂(w′)

R̂(w)
− 1

)
≤ η̂

(
η̂

2

R̂(w′)

R̂(w)
− 1

)
≤ 1

2

R̂(w′)

R̂(w)
− 1,

a contradiction. Therefore R̂(w′) ≤ R̂(w), which in turn implies

R̂(w′) ≤ R̂(w)−
η̂
∥∥∥∇R̂(w)

∥∥∥2

2

R̂(w)

(
1− η̂

2

)
.

QED.

Together, these pieces prove the desired smoothness inequality.

Proof of Lemma 3.16. For any j < t, by Lemma 3.18 and the definition of γj,

R̂(wj+1) ≤ R̂(wj)

1− η̂j(1− η̂j/2)

∥∥∥∇R̂(wj)
∥∥∥2

2

R̂(wj)2

 = R̂(wj)
(

1− η̂j(1− η̂j/2)γ2
j

)
.

Applying this recursively gives the bound.

Lastly,

‖wt‖2 =

∥∥∥∥∥∥
∑
j<t

η̂j∇R̂(wj)/R̂(wj)

∥∥∥∥∥∥
2

≤
∑
j<t

∥∥∥η̂j∇R̂(wj)/R̂(wj)
∥∥∥

2
=
∑
j<t

η̂jγj.

QED.
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Now by combining Lemma 3.16 and Lemma 2.13, we can prove the following risk bound.

Theorem 3.4. For ` ∈
{
`log, `exp

}
, given step sizes ηj ≤ 1 and w0 = 0, then for any t ≥ 1,

R̂(wt)− inf
w∈Rd

R̂(w) ≤
exp

(
‖v̄‖2

)
t

+
‖v̄‖2

2 + ln(t)2/γ2

2
∑t−1

j=0 ηj
.

Proof. Note that both `exp and `log satisfy the conditions of Lemma 3.16. Moreover, since

R̂(w0) = `(0) ≤ 1, it follows that as long as ηj ≤ 1, we have η̂j = ηjR̂(wj) ≤ 1 and

R̂(wj+1) ≤ R̂(wj). Therefore Lemma 3.16 implies

R̂(wj+1) ≤ R̂(wj)− ηj

(
1− ηjR̂(wj)

2

)∥∥∥∇R̂(wj)
∥∥∥2

2
≤ R̂(wj)−

ηj
2

∥∥∥∇R̂(wj)
∥∥∥2

2
,

and it then follows from Lemma 2.13 that for any w̄ ∈ Rd,

R̂(wt) ≤ R̂(w̄) +
‖w̄‖2

2

2
∑

j<t ηj
.

The proof is done by letting w̄ := v̄ + ū ln(t)/γ, since

L(Zw̄) = L(ZS v̄) + L(Zcw̄) ≤ inf
w
L(Aw) + n exp

(
‖v̄‖2 − ln(t)

)
= inf

w
L(Aw) +

n exp
(
‖v̄‖2

)
t

,

where we invoke Theorem 3.3 and use `log ≤ `exp and ‖zi‖2 ≤ 1. QED.

3.2.3 The implicit bias analysis

Here is our implicit bias result.

Theorem 3.5. Consider the exponential loss. Let the learning rate ηj = 1/
√
j + 1, then it

holds that

‖ΠSwt‖2 = Θ(1) and ‖ΠSwt − v̄‖2
2 = O

(
ln(t)2

√
t

)
,

and if Zc is nonempty, then wt/‖wt‖2 → ū.

Below we prove Theorem 3.5. Note that to illustrate the key proof ideas, we only focus

on the exponential loss and asymptotic convergence here; [17] further handled the logistic

loss and provided convergence rates.
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The analysis over S is easy. For convenience, define

R̂S(w) :=
L(ZSw)

n
, R̂c(w) :=

L(Zcw)

n
, R̄ := inf

w∈Rd
R̂(w),

and note R̂(w) = R̂S(w) + R̂c(w). Convergence over S is a consequence of strong convexity

(cf. Theorem 3.3) and risk convergence (cf. Theorem 3.4).

Lemma 3.19. Let λ denote the modulus of strong convexity of R̂S over the 1-sublevel set

(guaranteed positive by Theorem 3.3). Then for any t ≥ 1,

‖ΠSwt − v̄‖2
2 ≤

2

λ
min

{
1,

exp
(
‖v̄‖2

)
t

+
‖v̄‖2

2 + ln(t)2/γ2

2
∑t−1

j=0 ηj
.

}

Proof. By Theorem 3.3, R̂S(v̄) = R̄. Thus, by strong convexity,

‖ΠSwt − v̄‖2
2 ≤

2

λ

(
R̂S(w)− R̂S(v̄)

)
≤ 2

λ

(
R̂(wt)− inf

w∈Rd
R̂(w)

)
.

The bound follows by noting R̂(wt) ≤ R̂(w0) ≤ 1, and alternatively invoking in Theorem 3.4.

QED.

If Zc is empty, the proof is complete by plugging ηj = 1/
√
j + 1 into Lemma 3.19. The

rest of this subsection assumes Zc is nonempty and establishes convergence to ū ∈ S⊥.

First we prove the following key lemma, using the Fenchel-Young inequality.

Lemma 3.20. For any w ∈ Rd,

〈ū, w〉
‖w‖2

≥
− ln

(
R̂(w)− R̄

)
γ‖w‖2

−
ln(n) +

∥∥ΠS(w)
∥∥

2

γ‖w‖2

.

Note the additional term
∥∥ΠS(w)

∥∥
2
; by Lemma 3.19, this term is bounded.

Proof. First note that

Z⊥w = ZcΠ⊥w = Zcw + Zc(Π⊥w − w) = Zcw − ZcΠSw,

thus

〈q̄, Z⊥w〉 = 〈q̄, Zcw〉 −
〈
q̄, ZcΠS(w)

〉
≥ 〈q̄, Zcw〉 − ‖q̄‖1‖ZcΠS(w)‖∞

= 〈q̄, Zcw〉 −max
i

(Zc)i:ΠS(w) ≥ 〈q̄, Zcw〉 −
∥∥ΠS(w)

∥∥
2
,
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where q̄ is the optimal dual solution given by Theorem 3.3. Moreover, note that given ξ ∈ Rk,

we have lnL(ξ) = ln
∑k

i=1 exp(−ξi), so it follows from the Fenchel-Young inequality that

〈ū, w〉
‖w‖2

=

〈
Z>⊥ q̄, w

〉
γ‖w‖2

=
〈q̄, Z⊥w〉
γ‖w‖2

≥ −〈q̄,−Zcw〉
γ‖w‖2

−
∥∥ΠS(w)

∥∥
2

γ‖w‖2

≥ − lnLc(w) + g∗(q̄)

γ‖w‖2

−
∥∥ΠS(w)

∥∥
2

γ‖w‖2

≥ − ln R̂c(w) + ln(n)

γ‖w‖2

−
∥∥ΠS(w)

∥∥
2

γ‖w‖2

,

where g∗(q̄) ≤ 0 denotes the negative entropy of q̄. Also note that R̂c(w) ≤ R̂(w) − R̄, we

have

〈ū, w〉
‖w‖2

≥ −
ln
(
R̂(w)− R̄

)
+ ln(n)

γ‖w‖2

−
∥∥ΠS(w)

∥∥
2

γ‖w‖2

.

QED.

To apply Lemma 3.20, we also need the following bound on R̂(wt)− R̄.

Lemma 3.21. Suppose η̂j ≤ 1 (meaning ηj ≤ 1/R̂(wj)). Also suppose that j is large enough

such that R̂(wj)−R̄ ≤ λ(1−r)/2 for some r ∈ (0, 1), where λ is the strong convexity modulus

of R̂S over the 1-sublevel set. Then

R̂(wj+1)− R̄ ≤
(
R̂(wj)− R̄

)
exp

(
−rγγj η̂j

(
1− η̂j/2

))
.

Proof of Lemma 3.21. Invoking Lemmas 3.17 and 3.18 and proceeding as in Lemma 3.18,

R̂(wj+1)− R̄ ≤ R̂(wj)− R̄ − ηj
∥∥∥∇R̂(wj)

∥∥∥2

2
+
η2
j R̂(wj)

2

∥∥∥∇R̂(wj)
∥∥∥2

2

≤
(
R̂(wj)− R̄

)1−
ηj

∥∥∥∇R̂(wj)
∥∥∥2

2

R̂(wj)− R̄

(
1− ηjR̂(wj)/2

)
=
(
R̂(wj)− R̄

)(
1−

∥∥∥∇R̂(wj)
∥∥∥

2

R̂(wj)− R̄
·
ηjR̂(wj)

∥∥∥∇R̂(wj)
∥∥∥

2

R̂(wj)

(
1− ηjR̂(wj)/2

))

≤
(
R̂(wj)− R̄

)(
1−

∥∥∥∇R̂(wj)
∥∥∥

2

R̂(wj)− R̄
· η̂jγj

(
1− η̂j/2

))
. (3.21)
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Next it will be shown, by analyzing two cases, that∥∥∥∇R̂(wj)
∥∥∥

2

R̂(wj)− R̄
≥ rγ. (3.22)

In the following, for notational simplicity let w denote wj.

• Suppose R̂c(w) < r
(
R̂(w)− R̄

)
. Consequently,

R̂S(w)− R̄ > (1− r)
(
R̂(w)− R̄

)
.

Then, since 4
(
R̂(w)− R̄

)
≤ 2λ(1− r),

∥∥∥∇R̂(w)
∥∥∥

2

R̂(w)− R̄
≥
−
∥∥∥∇R̂c(w)

∥∥∥
2

+
∥∥∥∇R̂S(w)

∥∥∥
2

R̂(w)− R̄

≥
−R̂c(w) +

√
2λ(R̂S(w)− R̄)

R̂(w)− R̄

>
−r(R̂(w)− R̄) +

√
2λ(1− r)(R̂(w)− R̄)

R̂(w)− R̄

≥ (2− r)(R̂(w)− R̄)

R̂(w)− R̄
≥ 1 ≥ rγ.

• Otherwise, suppose R̂c(w) ≥ r
(
R̂(w)− R̄

)
. Using an expression inspired by a general

analysis of AdaBoost [71, Lemma 16 of journal version],∥∥∥∇R̂(w)
∥∥∥

2
≥ 〈ū,∇R̂(w)〉 = 〈Zū,∇L(Zw)/n〉 = 〈Zcū,∇L(Zcw)/n〉 ≥ γR̂c(w),

Thus ∥∥∥∇R̂(w)
∥∥∥

2

R̂(w)− R̄
≥ γR̂c(w)

R̂(w)− R̄
≥
γ

(
r
(
R̂(w)− R̄

))
R̂(w)− R̄

= rγ.

Combining eq. (3.21) with eq. (3.22),

R̂(wj+1)− R̄ ≤
(
R̂(wj)− R̄

)(
1− rγγj η̂j

(
1− η̂j/2

))
.
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QED.

A key property of the upper bound in Lemma 3.21 is that it has replaced γ2
j in Lemma 3.16

with γjγ. Plugging this bound into the Fenchel-Young scheme in Lemma 3.20 will now

fortuitously cancel γ, which leads to the following promising bound.

Lemma 3.22. Select t0 so that R̂(wt0) − R̄ ≤ min{1/n, λ(1 − r)/2} for some r ∈ (0, 1).

Then for any t ≥ t0 and any w,

〈ū, wt〉
‖wt‖2

≥
r
∑t−1

j=t0
η̂j(1− η̂j/2)γj

‖wt‖2

−
∥∥ΠS(wt)

∥∥
2

γ‖wt‖2

.

Proof. By Lemma 3.16, since ηj ≤ 1, the loss decreases at each step, and thus for any t ≥ t0,

R̂(wt) ≤ λ(1− r)/2. Combining Lemma 3.20 and Lemma 3.21,

〈ū, wt〉
‖wt‖2

≥
− ln

(
R̂(wt)− R̄

)
γ‖wt‖2

−
ln(n) +

∥∥ΠS(wt)
∥∥

2

γ‖wt‖2

.

≥
rγ
∑t−1

j=t0
η̂j(1− η̂j/2)γj − ln

(
R̂(wt0)− R̄

)
γ‖wt‖2

−
ln(n) +

∥∥ΠS(wt)
∥∥

2

γ‖wt‖2

≥
r
∑t−1

j=t0
η̂j(1− η̂j/2)γj

‖wt‖2

− ln(1/n)

γ‖wt‖2

−
ln(n) +

∥∥ΠS(w)
∥∥

2

γ‖wt‖2

≥
r
∑t−1

j=t0
η̂j(1− η̂j/2)γj

‖wt‖2

−
∥∥ΠS(w)

∥∥
2

γ‖wt‖2

.

QED.

Now we are ready to prove Theorem 3.5.

Proof of Theorem 3.5. The guarantee on v̄t and the Zc = ∅ case have been discussed in

Lemma 3.19, therefore assume Zc 6= ∅. The proof will proceed via invocation of the Fenchel-

Young scheme in Lemma 3.22, applied to wt.

It is necessary to first control the warm start parameter t0. Fix an arbitrary ε ∈ (0, 1),

set r := 1− ε/2, and let t0 be large enough such that

R̂(wt0)− R̄ ≤
1

n
, R̂(wt0)− R̄ ≤

λ(1− r)
2

=
λε

4
, 1− η̂t0

2
≥ 1− ηt0

2
≥ 1− ε

2
. (3.23)

By Theorem 3.4 and the choice of step sizes, it is enough to require

exp(‖v̄‖2)

t0
≤ min

{
1

2n
,
λε

8

}
,

‖v̄‖2
2 + ln(t0)2/γ2

2
√
t0

≤ min

{
1

2n
,
λε

8

}
,

1

2
√
t0 + 1

≤ ε

2
.
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Therefore, choosing t0 = O
(
max

{
n2, 1/ε2

})
suffices.

Invoking Lemma 3.22 with the above choice for wt,

1

2

∥∥∥∥ wt
‖wt‖2

− ū
∥∥∥∥2

2

= 1− 〈ū, w〉
‖wt‖2

≤ 1−
r
∑t−1

j=t0
η̂j(1− η̂j/2)γj

‖wt‖2

+

∥∥ΠS(w)
∥∥

2

γ‖wt‖2

≤ 1−
(1− ε/2)

∑t−1
j=t0

η̂j(1− ε/2)γj

‖wt‖2

+

∥∥ΠS(w)
∥∥

2

γ‖wt‖2

≤ 1−
(1− ε)

∑t−1
j=t0

η̂jγj

‖wt‖2

+

∥∥ΠS(w)
∥∥

2

γ‖wt‖2

= 1−
(1− ε)

(
‖wt0‖2 +

∑t−1
j=t0

η̂jγj)
)

‖wt‖2

+ (1− ε)‖wt0‖2

‖wt‖2

+

∥∥ΠS(w)
∥∥

2

γ‖wt‖2

≤ ε+
‖wt0‖2

‖wt‖2

+

∥∥ΠS(w)
∥∥

2

γ‖wt‖2

.

(3.24)

Since ε is arbitrary, it follows that wt/‖wt‖2 → ū. QED.
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Chapter 4: Wide two-layer ReLU networks

Despite the extensive empirical success of deep networks, their optimization and general-

ization properties are still not fully understood. Recently, the neural tangent kernel (NTK)

has provided the following insight into the problem. In the infinite-width limit, the NTK

converges to a limiting kernel which stays constant during training; on the other hand, when

the width is large enough, the function learned by gradient descent follows the NTK [28].

This motivates the study of overparameterized networks trained by gradient descent, us-

ing properties of the NTK. In fact, parameters related to the NTK, such as the minimum

eigenvalue of the limiting kernel, appear to affect optimization and generalization [72].

However, in addition to such NTK-dependent parameters, prior work also requires the

width to depend polynomially on n, 1/δ or 1/ε, where n denotes the size of the training

set, δ denotes the failure probability, and ε denotes the target error. These large widths far

exceed what is used empirically, constituting a significant gap between theory and practice.

In this chapter, we narrow this gap by showing that a two-layer ReLU network with

Ω(ln(n/δ) + ln(1/ε)2) hidden units trained by gradient descent achieves classification error

ε on test data, meaning both optimization and generalization occur. Unlike prior work, the

width is fully polylogarithmic in n, 1/δ, and 1/ε; the width will additionally depend on the

separation margin of the limiting kernel, a quantity which is guaranteed positive (assuming

no inputs are parallel), can distinguish between true labels and random labels, and can give

a tight sample-complexity analysis in the infinite-width setting. The chapter organization

together with some details are described below.

Section 4.1 studies gradient descent on the training set. Using the `1 geometry inherent

in classification tasks, we prove that with any width at least polylogarithmic and any

constant step size no larger than 1, gradient descent achieves training error ε in Θ̃(1/ε)

iterations (cf. Theorem 4.1). As is common in the NTK literature [73], we also show

the parameters hardly change, which will be essential to our generalization analysis.

Section 4.2 gives a test error bound. Concretely, using the preceding gradient descent

analysis, and standard Rademacher tools and exploiting how little the weights moved,

we show that with Ω̃(1/ε2) samples and Θ̃(1/ε) iterations, gradient descent finds a

solution with ε test error (cf. Theorem 4.2 and Corollary 4.1). (As discussed in

Remark 4.1, Ω̃(1/ε) samples also suffice via a smoothness-based generalization bound,

at the expense of large constant factors.)

Section 4.3 considers stochastic gradient descent (SGD) with access to a standard stochas-
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tic online oracle. We prove that with width at least polylogarithmic and Θ̃(1/ε) sam-

ples, SGD achieves an arbitrarily small test error (cf. Theorem 4.3).

Section 4.4 discusses the separation margin, which is in general a positive number, but

reflects the difficulty of the classification problem in the infinite-width limit. While

this margin can degrade all the way down to O(1/
√
n) for random labels (cf. Propo-

sition 4.5), it can be much larger when there is a strong relationship between features

and labels: for example, on the noisy 2-XOR data introduced in [74], we show that

the margin is Ω(1/d), which further implies our SGD sample complexity is tight in the

infinite-width case (cf. Section 4.4.2).

The contents of this chapter is based on [30].

Related work. There has been a large literature studying gradient descent on overparam-

eterized networks via the NTK. The most closely related work is [75], which showed that

a two-layer network trained by gradient descent with the logistic loss can achieve a small

test error, under the same assumption that the NTK with respect to the first layer can

separate the data distribution. However, they analyzed smooth activations, while we handle

the ReLU. They required Ω(1/ε2) hidden units, Ω̃(1/ε4) data samples, and O(1/ε2) steps,

while our result only needs polylogarithmic hidden units, Ω̃(1/ε2) data samples, and Õ(1/ε)

steps.

Additionally on shallow networks, [76] proved that on an overparameterized two-layer net-

work, gradient descent can globally minimize the empirical risk with the squared loss. Their

result requires Ω(n6/δ3) hidden units. [77, 78] further reduced the required overparameteri-

zation, but there is still a poly(n) dependency. Using the same amount of overparameteriza-

tion as [76], [72] further showed that the two-layer network learned by gradient descent can

achieve a small test error, assuming that on the data distribution the smallest eigenvalue of

the limiting kernel is at least some positive constant. They also gave a fine-grained charac-

terization of the predictions made by gradient descent iterates; such a characterization makes

use of a special property of the squared loss and cannot be applied to the logistic regression

setting. [79] showed that stochastic gradient descent (SGD) with the cross entropy loss can

learn a two-layer network with small test error, using poly(`, 1/ε) hidden units, where ` is at

least the covering number of the support of the feature distribution using balls whose radii

are no larger than the smallest distance between two data points with different labels. [80]

considered SGD on a two-layer network, and a variant of SGD on a three-layer network.

The three-layer analysis further exhibits some properties not captured by the NTK. They

assume a ground truth network with infinite-order smooth activations, and they require the
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width to depend polynomially on 1/ε and some constants related to the smoothness of the

activations of the ground truth network.

On deep networks, a variety of works have established low training error [81, 82, 83, 84].

[85] showed that SGD can minimize the regression loss for recurrent neural networks, and

[86] further proved a low generalization error. [87] showed that using the same number of

training examples, a three-layer ResNet can learn a function class with a much lower test

error than any kernel method. [36] assumed that the NTK with respect to the second layer of

a two-layer network can separate the data distribution, and proved that gradient descent on

a deep network can achieve ε test error with Ω(1/ε4) samples and Ω(1/ε14) hidden units. [88]

considered SGD with an online oracle and give a general result. Under the same assumption

as in [36], their result requires Ω(1/ε14) hidden units and sample complexity Õ(1/ε2). By

contrast, with the same online oracle, our result only needs polylogarithmic hidden units

and sample complexity Õ(1/ε). [29] extended our analysis to deep networks.

Notation. As usual, the dataset is denoted by {(xi, yi)}ni=1 where xi ∈ Rd and yi ∈
{−1,+1}. For simplicity, we assume that ‖xi‖2 = 1 for any 1 ≤ i ≤ n, which is stan-

dard in the NTK literature.

The two-layer network has weight matrices W ∈ Rm×d and a ∈ Rm. We use the following

parameterization, which is also used in [72, 76]:

f(x;W,a) :=
1√
m

m∑
s=1

asσ
(
〈ws, x〉

)
,

with initialization

ws,0 ∼ N (0, Id), and as ∼ unif
(
{−1,+1}

)
.

Note that in this paper, ws,t denotes the s-th row of W at step t. We fix a and only train

W , as in [72, 75, 76, 79]. We consider the ReLU activation σ(z) := max {0, z}, though our

analysis can be extended easily to Lipschitz continuous, positively homogeneous activations

such as leaky ReLU.

For simplicity, in this chapter we let ` denote the logistic loss. For any 1 ≤ i ≤ n and any

W , let fi(W ) := f(xi;W,a). The empirical risk and its gradient are given by

R̂(W ) :=
1

n

n∑
i=1

`
(
yifi(W )

)
, and ∇R̂(W ) =

1

n

n∑
i=1

`′
(
yifi(W )

)
yi∇fi(W ).
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For any t ≥ 0, the gradient descent step is given by Wt+1 := Wt − ηt∇R̂(Wt). Also define

f
(t)
i (W ) :=

〈
∇fi(Wt),W

〉
, and R̂(t)(W ) :=

1

n

n∑
i=1

`
(
yif

(t)
i (W )

)
.

Note that f
(t)
i (Wt) = fi(Wt). This property generally holds due to homogeneity: for any W

and any 1 ≤ s ≤ m,

∂fi
∂ws

=
1√
m
as1

[
〈ws, xi〉 > 0

]
xi, and

〈
∂fi
∂ws

, ws

〉
=

1√
m
asσ

(
〈ws, xi〉

)
,

and thus
〈
∇fi(W ),W

〉
= fi(W ).

4.1 EMPIRICAL RISK MINIMIZATION

In this section, we consider a fixed training set and empirical risk minimization. We first

state our assumption on the separability of the NTK, and then give our main result and a

proof sketch.

The key idea of the NTK is to do the first-order Taylor approximation:

f(x;W,a) ≈ f(x;W0, a) +
〈
∇Wf(x;W0, a),W −W0

〉
.

In other words, we want to do learning using the features given by ∇fi(W0) ∈ Rm×d. A

natural assumption is that there exists U ∈ Rm×d which can separate
{(
∇fi(W0), yi

)}n
i=1

with a positive margin:

min
1≤i≤n

(
yi

〈
U,∇fi(W0)

〉)
= min

1≤i≤n

(
yi

1√
m

m∑
s=1

as〈ūs, xi〉1
[
〈ws,0, xi〉 > 0

])
> 0. (4.1)

The infinite-width limit of eq. (4.1) is formalized as Assumption 4.1, with an additional

bound on the (2,∞) norm of the separator. A concrete construction of U using Assump-

tion 4.1 is given in eq. (4.2).

Let µN denote the Gaussian measure on Rd, given by the Gaussian density with respect

to the Lebesgue measure on Rd. We consider the following Hilbert space

H :=

{
w : Rd → Rd

∣∣∣∣ ∫ ‖w(z)‖2
2 dµN (z) <∞

}
.

For any x ∈ Rd, define φx ∈ H by φx(z) := x1
[
〈z, x〉 > 0

]
, and particularly define φi := φxi
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for the training input xi.

Assumption 4.1. There exists v̄ ∈ H and γ > 0, such that
∥∥v̄(z)

∥∥
2
≤ 1 for any z ∈ Rd,

and for any 1 ≤ i ≤ n,

yi 〈v̄, φi〉H := yi

∫ 〈
v̄(z), φi(z)

〉
dµN (z) ≥ γ.

As discussed in Section 4.4, the space H is the reproducing kernel Hilbert space (RKHS)

induced by the infinite-width NTK with respect to W , and φx maps x into H. Assump-

tion 4.1 supposes that the induced training set {(φi, yi)}ni=1 can be separated by some v̄ ∈ H,

with an additional bound on
∥∥v̄(z)

∥∥
2

which is crucial in our analysis. It is also possible to

give a dual characterization of the separation margin (cf. eq. (4.18)), which also allows us

to show that Assumption 4.1 always holds when there are no parallel inputs (cf. Proposi-

tion 4.4). However, it is often more convenient to construct v̄ directly; see Section 4.4 for

some examples.

With Assumption 4.1, we state our main empirical risk result.

Theorem 4.1. Under Assumption 4.1, given any risk target ε ∈ (0, 1) and any δ ∈ (0, 1/3),

let

λ :=

√
2 ln(4n/δ) + ln(4/ε)

γ/4
, and M :=

4096λ2

γ6
.

Then for any m ≥ M and any constant step size η ≤ 1, with probability 1 − 3δ over the

random initialization,

1

T

∑
t<T

R̂(Wt) ≤ ε, where T :=

⌈
2λ2

ηε

⌉
.

Moreover for any 0 ≤ t < T and any 1 ≤ s ≤ m,

∥∥ws,t − ws,0∥∥2
≤ 4λ

γ
√
m
.

While the number of hidden units required by prior work all have a polynomial dependency

on n, 1/δ or 1/ε, Theorem 4.1 only requires m = Ω
(
ln(n/δ) + ln(1/ε)2

)
. The required

width has a polynomial dependency on 1/γ, which is an adaptive quantity: while 1/γ can

be poly(n) for random labels (cf. Proposition 4.5), it can be polylog(n) when there is a

strong feature-label relationship, for example on the noisy 2-XOR data introduced in [74] (cf.

Proposition 4.6). Moreover, we show in Proposition 4.7 that if we want
{(
∇fi(W0), yi

)}n
i=1
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to be separable, which is the starting point of an NTK-style analysis, the width has to

depend polynomially on 1/γ.

In the rest of Section 4.1, we prove Theorem 4.1.

4.1.1 Properties at initialization

In this subsection, we give some nice properties of random initialization.

Given an initialization (W0, a), for any 1 ≤ s ≤ m, define

ūs :=
1√
m
asv̄(ws,0), (4.2)

where v̄ is given by Assumption 4.1. Collect ūs into a matrix U ∈ Rm×d. It holds that

‖ūs‖2 ≤ 1/
√
m, and

∥∥U∥∥
F
≤ 1.

Lemma 4.1 ensures that, with high probability, U constructed above has a positive margin

at initialization.

Lemma 4.1. Under Assumption 4.1, given any δ ∈ (0, 1) and any ε1 ∈ (0, γ), if m ≥(
2 ln(n/δ)

)
/ε21, then with probability 1− δ, it holds simultaneously for all 1 ≤ i ≤ n that

yif
(0)
i

(
U
)

= yi

〈
∇fi(W0), U

〉
≥ γ −

√
2 ln(n/δ)

m
≥ γ − ε1.

Proof. By Assumption 4.1, given any 1 ≤ i ≤ n,

µ := Ew∼N (0,Id)

[
yi
〈
v̄(w), xi

〉
1
[
〈w, xi〉 > 0

]]
≥ γ.

On the other hand,

yif
(0)
i

(
U
)

=
1

m

m∑
s=1

yi
〈
v̄(ws,0), xi

〉
1
[〈
ws,0, xi

〉
> 0
]

is the empirical mean of i.i.d. r.v.’s supported on [−1,+1] with mean µ. Therefore by

Hoeffding’s inequality, with probability 1− δ/n,

yif
(0)
i

(
U
)
− γ ≥ yif

(0)
i

(
U
)
− µ ≥ −

√
2 ln(n/δ)

m
.

Applying a union bound finishes the proof. QED.
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For any W , any ε2 > 0, and any 1 ≤ i ≤ n, define

αi(W, ε2) =
1

m

m∑
s=1

1
[∣∣〈ws, xi〉∣∣ ≤ ε2

]
.

Lemma 4.2 controls αi(W0, ε2). It will help us show that U has a good margin during the

training process.

Lemma 4.2. Under the condition of Lemma 4.1, for any ε2 > 0, with probability 1− δ, it

holds simultaneously for all 1 ≤ i ≤ n that

αi (W0, ε2) ≤
√

2

π
ε2 +

√
ln(n/δ)

2m
≤ ε2 +

ε1
2
.

Proof. Given any fixed ε2 and 1 ≤ i ≤ n,

E
[
αi(W0, ε2)

]
= P

(∣∣〈w, xi〉∣∣ ≤ ε2

)
≤ 2ε2√

2π
=

√
2

π
ε2,

because 〈w, xi〉 is a standard Gaussian r.v. and the density of standard Gaussian has max-

imum 1/
√

2π. Since αi(W0, ε2) is the empirical mean of Bernoulli r.v.’s, by Hoeffding’s

inequality, with probability 1− δ/n,

αi(W0, ε2) ≤ E
[
αi(W0, ε2)

]
+

√
ln(n/δ)

2m
≤
√

2

π
ε2 +

√
ln(n/δ)

2m
.

Applying a union bound finishes the proof. QED.

Finally, Lemma 4.3 controls the output of the network at initialization.

Lemma 4.3. Given any δ ∈ (0, 1), if m ≥ 25 ln(2n/δ), then with probability 1− δ, it holds

simultaneously for all 1 ≤ i ≤ n that

∣∣f(xi;W0, a)
∣∣ ≤√2 ln

(
4n/δ

)
.

To prove Lemma 4.3, we need the following technical result.

Lemma 4.4. Consider the random vector X = (X1, . . . , Xm), where Xi = σ(Zi) for some

σ : R → R that is 1-Lipschitz, and Zi are i.i.d. standard Gaussian r.v.’s. Then the r.v.

‖X‖2 is 1-sub-Gaussian, and thus with probability 1− δ,

‖X‖2 − E
[
‖X‖2

]
≤
√

2 ln(1/δ).
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Proof. Given a ∈ Rm, define

f(a) =

√√√√ m∑
i=1

σ(ai)2 =
∥∥σ(a)

∥∥
2
,

where σ(a) is obtained by applying σ coordinate-wisely to a. For any a, b ∈ Rm, by the

triangle inequality, we have

∣∣f(a)− f(b)
∣∣ =
∣∣∣∥∥σ(a)

∥∥
2
−
∥∥σ(b)

∥∥
2

∣∣∣ ≤∥∥σ(a)− σ(b)
∥∥

2
=

√√√√ m∑
i=1

(
σ(ai)− σ(bi)

)2
,

and by further using the 1-Lipschitz continuity of σ, we have

∣∣f(a)− f(b)
∣∣ ≤

√√√√ m∑
i=1

(
σ(ai)− σ(bi)

)2 ≤

√√√√ m∑
i=1

(ai − bi)2 =‖a− b‖2 .

As a result, f is a 1-Lipschitz continuous function w.r.t. the `2 norm, indeed f(X) is 1-sub-

Gaussian and the bound follows by Gaussian concentration [89, Theorem 2.4]. QED.

Now we can prove Lemma 4.3

Proof of Lemma 4.3. Given 1 ≤ i ≤ n, let hi = σ(W0xi)/
√
m. By Lemma 4.4, ‖hi‖2 is

sub-Gaussian with variance proxy 1/m, and with probability at least 1− δ/(2n) over W0,

‖hi‖2 − E
[
‖hi‖2

]
≤
√

2 ln(2n/δ)

m
≤

√
2 ln(2n/δ)

25 ln(2n/δ)
≤ 1−

√
2

2
.

On the other hand, by Jensen’s inequality,

E
[
‖hi‖2

]
≤
√

E
[
‖hi‖2

2

]
=

√
2

2
.

As a result, with probability 1 − δ/(2n), it holds that ‖hi‖2 ≤ 1. By a union bound, with

probability 1− δ/2 over W0, for all 1 ≤ i ≤ n, we have ‖hi‖2 ≤ 1.

For any W0 such that the above event holds, and for any 1 ≤ i ≤ n, the r.v. 〈hi, a〉 is

sub-Gaussian with variance proxy ‖hi‖2
2 ≤ 1. By Hoeffding’s inequality, with probability

1− δ/(2n) over a,

∣∣〈hi, a〉∣∣ =
∣∣f(xi;W0, a)

∣∣ ≤√2 ln
(
4n/δ

)
.
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By a union bound, with probability 1−δ/2 over a, for all 1 ≤ i ≤ n, we have
∣∣f(xi;W0, a)

∣∣ ≤√
2 ln

(
4n/δ

)
.

The probability that the above events all happen is at least (1 − δ/2)(1 − δ/2) ≥ 1 − δ,
over W0 and a. QED.

4.1.2 Convergence analysis of gradient descent

We analyze gradient descent in this subsection. First, define

Q̂(W ) :=
1

n

n∑
i=1

−`′
(
yifi(W )

)
.

We have the following observations.

• For any W and any 1 ≤ s ≤ m,
∥∥∂fi/∂ws∥∥2

≤ 1/
√
m, and thus

∥∥∇fi(W )
∥∥
F
≤ 1.

Therefore by the triangle inequality,
∥∥∥∇R̂(W )

∥∥∥
F
≤ Q̂(W ).

• The logistic loss satisfies 0 ≤ −`′ ≤ 1, and thus 0 ≤ Q̂(W ) ≤ 1.

• The logistic loss satisfies −`′ ≤ `, and thus Q̂(W ) ≤ R̂(W ).

The quantity Q̂ first appeared in the perceptron analysis [10] for the ReLU loss, and has

also been analyzed in prior work [14, 36, 75]. In this work, Q̂ specifically helps us prove the

following result, which plays an important role in obtaining a width which only depends on

polylog(1/ε).

Lemma 4.5. For any t ≥ 0 and any W , if ηt ≤ 1, then

ηtR̂(Wt) ≤
∥∥∥Wt −W

∥∥∥2

F
−
∥∥∥Wt+1 −W

∥∥∥2

F
+ 2ηtR̂(t)

(
W
)
.

Consequently, if we use a constant step size η ≤ 1 for 0 ≤ τ < t, then

η

∑
τ<t

R̂(Wτ )

+
∥∥∥Wt −W

∥∥∥2

F
≤
∥∥∥W0 −W

∥∥∥2

F
+ 2η

∑
τ<t

R̂(τ)
(
W
) .

Lemma 4.5 is similar to [87, Fact D.4 and Claim D.5], where the squared loss is considered.

Proof of Lemma 4.5. We have∥∥∥Wt+1 −W
∥∥∥2

F
=
∥∥∥Wt −W

∥∥∥2

F
− 2ηt

〈
∇R̂(Wt),Wt −W

〉
+ η2

t

∥∥∥∇R̂(Wt)
∥∥∥2

F
. (4.3)
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The first order term can be handled using the convexity of ` and homogeneity of ReLU:

〈
∇R̂(Wt),Wt −W

〉
=

1

n

n∑
i=1

`′
(
yifi(Wt)

)
yi

〈
∇fi(Wt),Wt −W

〉
=

1

n

n∑
i=1

`′
(
yifi(Wt)

) (
yifi(Wt)− yif (t)

i

(
W
))

≥ 1

n

n∑
i=1

(
`
(
yifi(Wt)

)
− `
(
yif

(t)
i

(
W
)))

= R̂(Wt)− R̂(t)
(
W
)
.

(4.4)

The second-order term of eq. (4.3) can be bounded as follows

η2
t

∥∥∥∇R̂(Wt)
∥∥∥2

F
≤ η2

t Q̂(Wt)
2 ≤ ηtQ̂(Wt) ≤ ηtR̂(Wt), (4.5)

because
∥∥∥∇R̂(Wt)

∥∥∥
F
≤ Q̂(Wt), and ηt, Q̂(Wt) ≤ 1, and Q̂(Wt) ≤ R̂(Wt). Combining

eqs. (4.3) to (4.5) gives

ηtR̂(Wt) ≤
∥∥∥Wt −W

∥∥∥2

F
−
∥∥∥Wt+1 −W

∥∥∥2

F
+ 2ηtR̂(t)

(
W
)
.

Telescoping gives the other claim. QED.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. The required width ensures that with probability 1−3δ, Lemmas 4.1

to 4.3 hold with ε1 = γ2/8 and ε2 = 4λ/(γ
√
m).

Let t1 denote the first step such that there exists 1 ≤ s ≤ m with
∥∥ws,t1 − ws,0∥∥2

>

4λ/(γ
√
m). Therefore for any 0 ≤ t < t1 and any 1 ≤ s ≤ m, it holds that

∥∥ws,t − ws,0∥∥2
≤

4λ/(γ
√
m). In addition, we let W := W0 + λU .

We first prove that for any 0 ≤ t < t1, it holds that R̂(t)
(
W
)
≤ ε/4. Since the logistic

satisfies `(z) ≤ exp(−z), and it is enough to prove that for any 1 ≤ i ≤ n,

yi

〈
∇fi(Wt),W

〉
≥ ln

(
4

ε

)
.

We will split the left hand side into three terms and control them individually:

yi

〈
∇fi(Wt),W

〉
= yi

〈
∇fi(W0),W0

〉
+ yi

〈
∇fi(Wt)−∇fi(W0),W0

〉
+ λyi

〈
∇fi(Wt), U

〉
.

(4.6)
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The first term of eq. (4.6) can be controlled using Lemma 4.3:∣∣∣yi 〈∇fi(W0),W0

〉∣∣∣ ≤√2 ln(4n/δ). (4.7)

The second term of eq. (4.6) can be written as

yi
〈
∇fi(Wt)−∇fi(W0),W0

〉
=

yi√
m

m∑
s=1

as
(
1
[〈
ws,t, xi

〉
> 0
]
− 1

[〈
ws,0, xi

〉
> 0
]) 〈

ws,0, xi
〉
.

Let Sc :=
{
s
∣∣∣ 1 [〈ws,t, xi〉 > 0

]
− 1

[〈
ws,0, xi

〉
> 0
]
6= 0
}

. Note that s ∈ Sc implies

∣∣∣〈ws,0, xi〉∣∣∣ ≤ ∣∣∣〈ws,t − ws,0, xi〉∣∣∣ ≤∥∥ws,t − ws,0∥∥2
‖xi‖2 =

∥∥ws,t − ws,0∥∥2
≤ 4λ/(γ

√
m) = ε2.

Therefore Lemma 4.2 ensures that

|Sc| ≤
∣∣∣∣{s ∣∣∣ | 〈ws,0, xi〉 | ≤ ε2

}∣∣∣∣ ≤ m

(
4λ

γ
√
m

+
ε1
2

)
= m

(
4λ

γ
√
m

+
γ2

16

)
.

and thus ∣∣∣yi 〈∇fi(Wt)−∇fi(W0),W0

〉∣∣∣ ≤ 1√
m
· |Sc| ·

4λ

γ
√
m
≤ 16λ2

γ2
√
m

+
λγ

4
≤ λγ

2
, (4.8)

where in the last step we use the condition that m ≥ 4096λ2/γ6.

The third term of eq. (4.6) can be bounded as follows: by Lemma 4.1,

yi

〈
∇fi(Wt), U

〉
= yi

〈
∇fi(W0), U

〉
+ yi

〈
∇fi(Wt)−∇fi(W0), U

〉
≥ γ − ε1 + yi

〈
∇fi(Wt)−∇fi(W0), U

〉
.

In addition,

yi

〈
∇fi(Wt)−∇fi(W0), U

〉
=
yi
m

m∑
i=1

(
1
[〈
ws,t, xi

〉
> 0
]
− 1

[〈
ws,0, xi

〉
> 0
]) 〈

v̄(ws,0), xi
〉

≥ − 1

m
· |Sc| ≥ −

4λ

γ
√
m
− ε1

2
≥ −γ

2

16
− ε1

2
,

where we use m ≥ 4096λ2/γ6. Therefore,

yi

〈
∇fi(Wt), U

〉
≥ γ − ε1 −

γ2

16
− ε1

2
= γ − γ2

4
≥ 3γ

4
. (4.9)
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Putting eqs. (4.7) to (4.9) into eq. (4.6), we have

yi

〈
∇fi(Wt),W

〉
≥ −

√
2 ln

(
4n

δ

)
− λγ

2
+

3λγ

4
=
λγ

4
−

√
2 ln

(
4n

δ

)
= ln

(
4

ε

)
,

for the λ given in Theorem 4.1. Thus for any 0 ≤ t < t1, it holds that R̂(t)
(
W
)
≤ ε/4.

Let T := d2λ2/(ηε)e, we claim that t1 ≥ T . To see this, note that Lemma 4.5 ensures

∥∥∥Wt1 −W
∥∥∥2

F
≤
∥∥∥W0 −W

∥∥∥2

F
+ 2η

∑
t<t1

R̂(t)
(
W
) ≤ λ2 +

ε

2
ηt1.

Suppose t1 < T , then we have t1 ≤ 2λ2/(ηε), and thus
∥∥∥Wt1 −W

∥∥∥2

F
≤ 2λ2. As a result,

using ‖U‖F ≤ 1 and the definition of W ,

√
2λ ≥

∥∥∥Wt1 −W
∥∥∥
F
≥
〈
Wt1 −W,U

〉
=
〈
Wt1 −W0, U

〉
−
〈
W −W0, U

〉
≥
〈
Wt1 −W0, U

〉
− λ.

Moreover, due to eq. (4.9),

〈
Wt1 −W0, U

〉
= −η

∑
τ<t1

〈
∇R̂(Wτ ), U

〉
= η

∑
τ<t1

1

n

n∑
i=1

−`′
(
yifi(Wτ )

)
yi

〈
∇fi(Wτ ), U

〉
≥ η

∑
τ<t1

Q̂(Wτ )
3γ

4
.

which implies η
∑

τ<t1
Q̂(Wτ ) ≤ 4(

√
2+1)λ
3γ

≤ 4λ
γ

. Furthermore, by the triangle inequality, for

any 1 ≤ s ≤ m,

∥∥ws,t − ws,0∥∥2
≤ η

∑
τ<t

∥∥∥∥∥∥ 1

n

n∑
i=1

`′
(
yifi(Wτ )

)
yi

∂fi
∂ws,τ

∥∥∥∥∥∥
2

≤ η
∑
τ<t

1

n

n∑
i=1

∣∣∣`′ (yifi(Wτ )
)∣∣∣ ·∥∥∥∥∥ ∂fi

∂ws,τ

∥∥∥∥∥
2

≤ η
∑
τ<t

Q̂(Wτ )
1√
m
≤ η

∑
τ<t1

Q̂(Wτ )
1√
m
≤ 4λ

γ
√
m
, (4.10)

which contradicts the definition of t1. Therefore t1 ≥ T .

Now we are ready to prove the claims of Theorem 4.1. The bound on
∥∥ws,t − ws,0∥∥2

follow
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by repeating the steps in eq. (4.10). The risk guarantee follows from Lemma 4.5:

1

T

∑
t<T

R̂(Wt) ≤

∥∥∥W0 −W
∥∥∥2

F

ηT
+

2

T

∑
t<T

R̂(t)
(
W
)
≤ ε

2
+
ε

2
= ε.

QED.

4.2 GENERALIZATION

To get a generalization bound, we naturally extend Assumption 4.1 to the following as-

sumption.

Assumption 4.2. There exists v̄ ∈ H and γ > 0, such that
∥∥v̄(z)

∥∥
2
≤ 1 for any z ∈ Rd,

and

y

∫ 〈
v̄(z), x

〉
1
[
〈z, x〉 > 0

]
dµN (z) ≥ γ

for almost all (x, y) sampled from the data distribution D.

The above assumption is also made in [75] for smooth activations. [36] make a similar

separability assumption, but in the RKHS induced by the second layer a; by contrast,

Assumption 4.2 is on separability in the RKHS induced by the first layer W .

Here is our test error bound with Assumption 4.2.

Theorem 4.2. Under Assumption 4.2, given any ε ∈ (0, 1) and any δ ∈ (0, 1/4), let λ and

M be given as in Theorem 4.1:

λ :=

√
2 ln(4n/δ) + ln(4/ε)

γ/4
, and M :=

4096λ2

γ6
.

Then for any m ≥ M and any constant step size η ≤ 1, with probability 1 − 4δ over the

random initialization and data sampling,

P(x,y)∼D
(
yf(x;Wk, a) ≤ 0

)
≤ 2ε+

16
(√

2 ln(4n/δ) + ln(4/ε)
)

γ2
√
n

+ 6

√
ln(2/δ)

2n
,

where k denotes the step with the minimum empirical risk before d2λ2/(ηε)e.

Below is a direct corollary of Theorem 4.2.
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Corollary 4.1. Under Assumption 4.2, given any ε, δ ∈ (0, 1), using a constant step size no

larger than 1 and let

n = Ω̃

(
1

γ4ε2

)
, and m = Ω

(
ln(n/δ) + ln(1/ε)2

γ8

)
,

it holds with probability 1−δ that P(x,y)∼D
(
yf(x;Wk, a) ≤ 0

)
≤ ε, where k denotes the step

with the minimum empirical risk in the first Θ̃(1/(γ2ε)) steps.

Remark 4.1. To get Theorem 4.2, we use a Lipschitz-based Rademacher complexity bound.

One can also use a smoothness-based Rademacher complexity bound [90, Theorem 1] and

get a sample complexity Õ(1/(γ4ε)). However, the bound will become complicated and some

large constant will be introduced. It is an interesting open question to give a clean analysis

based on smoothness.

Below we prove Theorem 4.2; the key tool is a Rademacher complexity bound based on

the sigmoid loss and
∥∥W>

k −W>
0

∥∥
2,∞.

Given a sample S = (z1, . . . , zn) (where zi = (xi, yi)) and a function class H, the

Rademacher complexity of H on S is defined as

Rad (H ◦ S) :=
1

n
Eε∼{−1,+1}n

sup
h∈H

n∑
i=1

εih(zi)

 .
We will use the following general result.

Lemma 4.6. [91, Theorem 26.5] If h(z) ∈ [a, b], then with probability 1− δ,

sup
h∈H

Ez∼D
[
h(z)

]
− 1

n

n∑
i=1

h(zi)

 ≤ 2Rad (H ◦ S) + 3(b− a)

√
ln(2/δ)

2n
.

We also need the following contraction lemma. Consider a feature sample X = (x1, . . . , xn)

and a function class F on X. For each 1 ≤ i ≤ n, let gi : R → R denote a K-Lipschitz

function. Let g ◦F denote the class of functions which map xi to gi(f(xi)) for some f ∈ F .

Lemma 4.7. [91, Lemma 26.9] Rad (g ◦ F ◦X) ≤ KRad (F ◦X).

To prove Theorem 4.2, we need one more Rademacher complexity bound. Given a fixed

initialization (W0, a), consider the following classes:

Wρ :=
{
W ∈ Rm×d

∣∣∣ ∥∥ws − ws,0∥∥2
≤ ρ for any 1 ≤ s ≤ m

}
,
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and

Fρ :=
{
x 7→ f(x;W,a)

∣∣ W ∈ Wρ

}
.

Given a feature sample X, the following Lemma 4.8 controls the Rademacher complexity of

Fρ ◦X. A similar version was given in [92, Theorem 43], and the proof is similar to the proof

of [93, Theorem 18] which also pushes the supremum through and handles each hidden unit

separately.

Lemma 4.8. Rad
(
Fρ ◦X

)
≤ ρ
√
m/n.

Proof of Lemma 4.8. We have

Eε

 sup
W∈Wρ

n∑
i=1

εif(xi;W,a)

 = Eε

 sup
W∈Wρ

n∑
i=1

εi

m∑
s=1

1√
m
asσ

(
〈ws, xi〉

)
= Eε

 1√
m

sup
W∈Wρ

m∑
s=1

n∑
i=1

εiasσ
(
〈ws, xi〉

)
= Eε

 1√
m

m∑
s=1

 sup
‖ws−ws,0‖

2
≤ρ

n∑
i=1

εiasσ
(
〈ws, xi〉

)


=
1√
m

m∑
i=1

Eε

 sup
‖ws−ws,0‖

2
≤ρ

n∑
i=1

εiasσ
(
〈ws, xi〉

) .
Note that for any 1 ≤ s ≤ m, the mapping z 7→ asσ(z) is 1-Lipschitz, and thus Lemma 4.7

gives

Eε

 sup
W∈Wρ

n∑
i=1

εif(xi;W,a)

 ≤ 1√
m

m∑
i=1

Eε

 sup
‖ws−ws,0‖

2
≤ρ

n∑
i=1

εiasσ
(
〈ws, xi〉

)
≤ 1√

m

m∑
i=1

Eε

 sup
‖ws−ws,0‖

2
≤ρ

n∑
i=1

εi 〈ws, xi〉

 .
Invoking the Rademacher complexity of linear classifiers [91, Lemma 26.10] then gives

Rad
(
Fρ ◦X

)
=

1

n
Eε

 sup
W∈Wρ

n∑
i=1

εif(xi;W,a)

 ≤ ρ
√
m√
n
.
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QED.

Now we are ready to prove the main generalization result Theorem 4.2.

Proof. Fix an initialization (W0, a), and let H :=
{

(x, y) 7→ −`′
(
yf(x)

) ∣∣∣ f ∈ Fρ}. Since

for any h ∈ H and any z, h(z) ∈ [0, 1], Lemma 4.6 ensures that with probability 1− δ over

the data sampling,

sup
h∈H

Ez∼D
[
h(z)

]
− 1

n

n∑
i=1

h(zi)

 = sup
W∈Wρ

(
Q(W )− Q̂(W )

)
≤ 2Rad (H ◦ S) + 3

√
ln(2/δ)

2n
.

Since for each 1 ≤ i ≤ n, the mapping z 7→ −`′(yiz) is (1/4)-Lipschitz, Lemma 4.7 further

ensures that Rad (H ◦ S) ≤ Rad
(
Fρ ◦X

)
/4, and thus

sup
W∈Wρ

(
Q(W )− Q̂(W )

)
≤ ρ
√
m

2
√
n

+ 3

√
ln(2/δ)

2n
. (4.11)

On the other hand, Theorem 4.1 ensures that under the conditions of Theorem 4.2, for

any fixed dataset, with probability 1− 3δ over the random initialization, we have

Q̂(Wk) ≤ R̂(Wk) ≤ ε, and
∥∥ws,k − ws,0∥∥2

≤ 4λ

γ
√
m
.

As a result, invoking eq. (4.11) with ρ = 4λ/(γ
√
m), with probability 1−4δ over the random

initialization and data sampling,

Q(Wk) ≤ Q̂(Wk) +
2λ

γ
√
n

+ 3

√
ln(2/δ)

2n
≤ ε+

8
(√

2 ln(4n/δ) + ln(4/ε)
)

γ2
√
n

+ 3

√
ln(2/δ)

2n
.

Invoking P(x,y)∼D
(
yf(x;W,a) ≤ 0

)
≤ 2Q(W ) finishes the proof. QED.

4.3 STOCHASTIC GRADIENT DESCENT

There are some different formulations of SGD. In this section, we consider SGD with an

online oracle. We randomly sample W0 and a, and fix a during training. At step i, a data

example (xi, yi) is sampled from the data distribution. We still let fi(W ) := f(xi;W,a), and

perform the following update

Wi+1 := Wi − ηi`′
(
yifi(Wi)

)
yi∇fi(Wi).
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Note that here i starts from 0.

Still with Assumption 4.2, we show the following result.

Theorem 4.3. Under Assumption 4.2, given any ε, δ ∈ (0, 1), using a constant step size and

m = Ω
((

ln(1/δ) + ln(1/ε)2
)
/γ8
)

, it holds with probability 1− δ that

1

n

n∑
i=1

P(x,y)∼D
(
yf(x;Wi, a) ≤ 0

)
≤ ε, for n = Θ̃(1/(γ2ε)).

Below we prove Theorem 4.3. For any i and W , define

Ri(W ) := `
(
yi
〈
∇fi(Wi),W

〉)
, and Qi(W ) := −`′

(
yi
〈
∇fi(Wi),W

〉)
.

Due to homogeneity, it holds that Ri(Wi) = `
(
yifi(Wi)

)
and Qi(Wi) = −`′

(
yifi(Wi)

)
.

The first step is an extension of Lemma 4.5 to the SGD setting, with a similar proof.

Lemma 4.9. With a constant step size η ≤ 1, for any W and any i ≥ 0,

η

∑
t<i

Rt(Wt)

+
∥∥∥Wi −W

∥∥∥2

F
≤
∥∥∥W0 −W

∥∥∥2

F
+ 2η

∑
t<i

Rt

(
W
) .

Proof. Recall that
∥∥∇ft(Wt)

∥∥
F
≤ 1, we have

∥∥∥Wt+1 −W
∥∥∥2

F
≤
∥∥∥Wt −W

∥∥∥2

F
− 2η`′

(
ytft(Wt)

)
yt

〈
∇ft(Wt),Wt −W

〉
+ η2

(
`′
(
ytft(Wt)

))2

.

(4.12)

Similar to the proof of Lemma 4.5, the first order term of eq. (4.12) can be handled using

the convexity of ` and homogeneity of ReLU as follows

`′
(
ytft(Wt)

)
yt

〈
∇ft(Wt),Wt −W

〉
≥ Rt(Wt)−Rt

(
W
)
, (4.13)

and the second-order term of eq. (4.12) can be bounded as follows

η2
(
`′
(
ytft(Wt)

))2

≤ −η`′
(
ytft(Wt)

)
≤ η`

(
ytft(Wt)

)
= ηRt(Wt), (4.14)

since η,−`′ ≤ 1 and −`′ ≤ `. Combining eqs. (4.12) to (4.14) gives

ηRt(Wt) ≤
∥∥∥Wt −W

∥∥∥2

F
−
∥∥∥Wt+1 −W

∥∥∥2

F
+ 2ηRt

(
W
)
.
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Telescoping gives the claim. QED.

With Lemma 4.9, we can also extend Theorem 4.1 to the SGD setting and get a bound on∑
i<nQi(Wi), using a similar proof. With Lemma 4.9, we give the following result, which is

an extension of Theorem 4.1 to the SGD setting.

Lemma 4.10. Under Assumption 4.2, given any ε ∈ (0, 1), any δ ∈ (0, 1/3), and any positive

integer n0, let

λ :=

√
2 ln(4n0/δ) + ln(4/ε)

γ/4
, and M :=

4096λ2

γ6
.

For any m ≥ M and any constant step size η ≤ 1, if n0 ≥ n := d2λ2/(ηε)e, then with

probability 1− 3δ,

1

n

∑
i<n

Qi(Wi) ≤ ε.

Proof. We first sample n0 data examples (x0, y0), . . . , (xn0−1, yn0−1), and then feed (xi, yi) to

SGD at step i. We only consider the first n0 steps.

The proof is similar to the proof of Theorem 4.1. Let n1 denote the first step before n0

such that there exists some 1 ≤ s ≤ m with
∥∥ws,n1 − ws,0

∥∥
2
> 4λ/(γ

√
m). If such a step

does not exist, let n1 = n0.

Let W := W0 + λU , in exactly the same way as in Theorem 4.1, we can show that with

probability 1− 3δ, for any 0 ≤ i < n1,

yi

〈
∇fi(Wi),W

〉
≥ ln

(
4

ε

)
, and thus Ri

(
W
)
≤ ε/4.

Now consider n := d2λ2/(ηε)e. Using Lemma 4.9, in the same way as the proof of The-

orem 4.1 (replacing Q̂(Wτ ) with Qi(Wi), etc.), we can show that n ≤ n1. Then invoking

Lemma 4.9 again, we get

1

n

∑
i<n

Qi(Wi) ≤
1

n

∑
i<n

Ri(Wi) ≤
∥∥W0 −W

∥∥2

F

ηn
+

2

n

∑
i<n

Ri

(
W
)
≤ ε

2
+
ε

2
= ε.

QED.

To further get a bound on the cumulative population risk
∑

i<nQ(Wi), the key observation

is that
∑

i<n

(
Q(Wi)−Qi(Wi)

)
is a martingale. Using a martingale Bernstein bound, we

prove the following lemma; applying it finishes the proof of Theorem 4.3.
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Lemma 4.11. Given any δ ∈ (0, 1), with probability 1− δ,

∑
t<i

Q(Wt) ≤ 4
∑
t<i

Qt(Wt) + 4 ln

(
1

δ

)
.

To prove Lemma 4.11, we need the following martingale Bernstein bound.

Lemma 4.12. [94, Theorem 1] Let (Mt,Ft)t≥0 denote a martingale with M0 = 0 and F0 be

the trivial σ-algebra. Let (∆t)t≥1 denote the corresponding martingale difference sequence,

and let

Vt :=
t∑

j=1

E
[
∆2
j

∣∣∣Fj−1

]
denote the sequence of conditional variance. If ∆t ≤ R a.s., then for any δ ∈ (0, 1), with

probability at least 1− δ,

Mt ≤
Vt
R

(e− 2) +R ln

(
1

δ

)
.

Proof of Lemma 4.11. For any i ≥ 0, let zi denote (xi, yi), and z0,i denote (z0, . . . , zi). Note

that the quantity
∑

t<i

(
Q(Wt)−Qt(Wt)

)
is a martingale w.r.t. the filtration σ(z0,i−1). The

martingale difference sequence is given by Q(Wt)−Qt(Wt), which satisfies

Q(Wt)−Qt(Wt) = E(x,y)∼D

[
−`′

(
yf(x;Wt, a)

)]
+ `′

(
ytf(xt;Wt, a)

)
≤ 1, (4.15)

since −1 ≤ `′ ≤ 0. Moreover, we have

E
[(
Q(Wt)−Qt(Wt)

)2
∣∣∣σ(z0,t−1)

]
=Q(Wt)

2 − 2Q(Wt)E
[
Qt(Wt)

∣∣σ(z0,t−1)
]

+ E
[
Qt(Wt)

2
∣∣σ(z0,t−1)

]
= −Q(Wt)

2 + E
[
Qt(Wt)

2
∣∣σ(z0,t−1)

]
≤E

[
Qt(Wt)

2
∣∣σ(z0,t−1)

]
≤E

[
Qt(Wt)

∣∣σ(z0,t−1)
]

=Q(Wt).

(4.16)

Invoking Lemma 4.12 with eqs. (4.15) and (4.16) gives that with probability 1− δ,

∑
t<i

(
Q(Wt)−Qt(Wt)

)
≤ (e− 2)

∑
t<i

Q(Wt) + ln

(
1

δ

)
,

which implies
∑

t<iQ(Wt) ≤ 4
∑

t<iQt(Wt) + 4 ln
(

1
δ

)
. QED.

Finally, we prove Theorem 4.3.
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Proof of Theorem 4.3. Suppose the condition of Lemma 4.10 holds. Then we have for n =

d2λ2/(ηε)e, with probability 1− 3δ,

1

n

∑
i<n

Qi(Wi) ≤ ε.

Further invoking Lemma 4.11 gives that with probability 1− 4δ,

1

n

∑
i<n

Q(Wi) ≤
4

n

∑
i<n

Qi(Wi) +
4

n
ln

(
1

δ

)
≤ 5ε.

Since P(x,y)∼D
(
yf(x;W,a) ≤ 0

)
≤ 2Q(W ), we get

1

n

n∑
i=1

P(x,y)∼D
(
yf(x;Wi, a) ≤ 0

)
≤ 10ε.

For the condition of Lemma 4.10 to hold, it is enough to let

n0 = Θ

(
ln(1/δ)

ηγ2ε2

)
,

which gives

M = Θ

(
ln(1/δ) + ln(1/ε)2

γ8

)
and n = Θ

(
ln(1/δ) + ln(1/ε)2

γ2ε

)
.

QED.

4.4 ON SEPARABILITY

In this section we give some discussion on Assumption 4.1, the separability of the NTK.

Given a training set
{

(xi, yi)
}n
i=1

, the linear kernel is defined as K0(xi, xj) :=
〈
xi, xj

〉
. The

maximum margin achievable by a linear classifier is given by

γ0 := min
q∈∆n

√
(q � y)>K0 (q � y). (4.17)

where ∆n denotes the probability simplex and � denotes the Hadamard product. In addition

to the dual definition eq. (4.17), when γ0 > 0 there also exists a maximum margin classifier

ū which gives a primal characterization of γ0: it holds that ‖ū‖2 = 1 and yi 〈ū, xi〉 ≥ γ0 for
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all i.

In this paper we consider another kernel, the infinite-width NTK with respect to the first

layer:

K1

(
xi, xj

)
:= E

[
∂f(xi;W0, a)

∂W0

,
∂f(xj;W0, a)

∂W0

]
= Ew∼N (0,Id)

[〈
xi1

[
〈xi, w〉 > 0

]
, xj1

[
〈xj, w〉 > 0

] 〉]
= 〈φi, φj〉H.

Here φ and H are defined at the beginning of Section 4.1. Similar to the dual definition of

γ0, the margin given by K1 is defined as

γ1 := min
q∈∆n

√
(q � y)>K1 (q � y). (4.18)

We can also give a primal characterization of γ1 when it is positive; the proof uses the Fenchel

duality theory.

Proposition 4.4. If γ1 > 0, then there exists v̂ ∈ H such that‖v̂‖H = 1, and yi 〈v̂, φi〉H ≥ γ1

for any 1 ≤ i ≤ n. Additionally
∥∥v̂(z)

∥∥
2
≤ 1/γ1 for any z ∈ Rd.

Proof. Define f : H → R by

f(w) :=
1

2

∫
‖w(z)‖2

2 dµN (z) =
1

2
‖w‖2

H.

It holds that f is continuous, and f ∗ has the same form. Define g : Rn → R by

g(p) := max
1≤i≤n

pi,

with conjugate

g∗(q) =

0, if q ∈ ∆n,

+∞, o.w.

Finally, define the linear mapping A : H → Rn by (Aw)i = yi 〈w, φi〉H.

Since f , f ∗, g and g∗ are lower semi-continuous, and dom g−Adom f = Rn, and dom f ∗−
A∗dom g∗ = H, Fenchel duality may be applied in each direction [95, Theorem 4.4.3], and

ensures that

inf
w∈H

(
f(w) + g(Aw)

)
= sup

q∈Rn

(
−f ∗(A∗q)− g∗(−q)

)
.
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with optimal primal-dual solutions (w̄, q̄). Moreover

inf
w∈H

(
f(w) + g(Aw)

)
= inf

w∈H,u∈Rn
sup
q∈Rn

(
f(w) + g(Aw + u) + 〈q, u〉

)
≥ sup

q∈Rn
inf

w∈H,u∈Rn

(
f(w) + g(Aw + u) + 〈q, u〉

)
= sup

q∈Rn
inf

w∈H,u∈Rn

((
f(w)− 〈A∗q, w〉

)
H +

(
g(Aw + u)− 〈−q, Aw + u〉

))
= sup

q∈Rn

(
−f ∗(A∗q)− g∗(−q)

)
.

By strong duality, the inequality holds with equality. It follows that

w̄ = A∗q̄, and supp(−q̄) ⊂ arg max
1≤i≤n

(Aw̄)i.

Now let us look at the dual optimization problem. It is clear that

sup
q∈Rn

(
−f ∗(A∗q)− g∗(−q)

)
= − inf

q∈∆n

f ∗(A∗q).

In addition, we have

f ∗(A∗q) =
1

2

∫ ∥∥∥∥∥∥
n∑
i=1

qiyiφi(z)

∥∥∥∥∥∥
2

2

dµN (z)

=
1

2

∫ n∑
i,j=1

qiqjyiyj
〈
φi(z), φj(z)

〉
dµN (z)

=
1

2

n∑
i,j=1

qiqjyiyj

∫ 〈
φi(z), φj(z)

〉
dµN (z)

=
1

2

n∑
i,j=1

qiqjyiyjK1(i, j) =
1

2
(q � y)>K1(q � y),

and thus f ∗(A∗q̄) = γ2
1/2. Since w̄ = A∗q̄, we have that ‖w̄‖H = γ1. In addition,

g(Aw̄) = −f ∗ (A∗q̄)− f (w̄) = −γ2
1 ,

and thus −w̄ has margin γ2
1 . Moreover, we have

w̄(z) =
n∑
i=1

q̄iyiφi(z) =
n∑
i=1

q̄iyixi1
[
〈z, xi〉 > 0

]
,
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and thus
∥∥w̄(z)

∥∥
2
≤ 1. Therefore, v̂ = −w̄/γ1 satisfies all requirements of Proposition 4.4.

QED.

Using the upper bound
∥∥v̂(z)

∥∥
2
≤ 1/γ1, we can see that γ1v̂ satisfies Assumption 4.1 with

γ ≥ γ2
1 . However, such an upper bound

∥∥v̂(z)
∥∥

2
≤ 1/γ1 might be too loose, which leads to

a bad rate. In fact, as shown later, in some cases we can construct v̄ directly which satisfies

Assumption 4.1 with a large γ. For this reason, we choose to make Assumption 4.1 instead

of assuming a positive γ1.

However, we can use γ1 to show that Assumption 4.1 always holds when there are no

parallel inputs. [77, Corollary I.2] proved that if for any two feature vectors xi and xj, we

have ‖xi − xj‖2 ≥ θ and ‖xi + xj‖2 ≥ θ for some θ > 0, then the minimum eigenvalue of K1

is at least θ/(100n2). For arbitrary labels y ∈ {−1,+1}n, since ‖q � y‖2 ≥ 1/
√
n, we have

the worst case bound γ2
1 ≥ θ/(100n3). A direct improvement of this bound is θ/(100n3

S),

where nS denotes the number of support vectors, which could be much smaller than n with

real world data.

On the other hand, given any training set
{

(xi, yi)
}n
i=1

which may have a large margin,

replacing y with random labels would destroy the margin, which is what should be expected.

Proposition 4.5. Given any training set
{

(xi, yi)
}n
i=1

, if the true labels y are replaced with

random labels ε ∼ unif
(
{−1,+1}n

)
, then with probability 0.9 over the random labels, it

holds that γ1 ≤ 1/
√

20n.

Proof. Let q̂ denote the uniform probability vector (1/n, . . . , 1/n). Note that

Eε∼unif({−1,+1}n)

[
(q̂ � ε)>K1 (q̂ � ε)

]
= Eε∼unif({−1,+1}n)

 n∑
i,j=1

1

n2
εiεjK1(xi, xj)


=

1

n2

n∑
i,j=1

Eε∼unif({−1,+1}n)
[
εiεjK1(xi, xj)

]
=

1

n2

n∑
i=1

K1(xi, xi) =
1

2n
.

Since 0 ≤ (q̂ � ε)>K1 (q̂ � ε) ≤ 1 for any ε, by Markov’s inequality with probability 0.9, it

holds that (q̂ � ε)>K1 (q̂ � ε) ≤ 1/(20n), and thus γ1 ≤ 1/
√

20n. QED.

Although the above bounds all have a polynomial dependency on n, they hold for arbitrary

or random labels, and thus do not assume any relationship between the features and labels.
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Next we give some examples where there is a strong feature-label relationship, and thus a

much larger margin can be proved.

4.4.1 The linearly separable case

Suppose the data distribution is linearly separable with margin γ0: there exists a unit

vector ū such that y 〈ū, x〉 ≥ γ0 almost surely. Then we can define v̄(z) := ū for any z ∈ Rd.

For almost all (x, y), we have

y

∫ 〈
v̄(z), x

〉
1
[
〈z, x〉 > 0

]
dµN (z) =

∫
y 〈ū, x〉1

[
〈z, x〉 > 0

]
dµN (z)

≥ γ

∫
1
[
〈z, x〉 > 0

]
dµN (z)

=
γ0

2
,

and thus Assumption 4.1 holds with γ = γ0/2.

4.4.2 The noisy 2-XOR distribution

We consider the noisy 2-XOR distribution introduced in [74]. It is the uniform distribution

over the following 2d points:

(x1, x2, y, x3, . . . , xd)

∈
{(

1√
d− 1

, 0, 1

)
,

(
0,

1√
d− 1

,−1

)
,

(
−1√
d− 1

, 0, 1

)
,

(
0,
−1√
d− 1

,−1

)}
×
{
−1√
d− 1

,
1√
d− 1

}d−2

.

The factor 1/
√
d− 1 ensures that ‖x‖2 = 1, and × above denotes the Cartesian product.

Here the label y only depends on the first two coordinates of the input x.

To construct v̄, we first decompose R2 into four regions:

A1 :=
{

(z1, z2)
∣∣ z1 ≥ 0, |z1| ≥ |z2|

}
,

A2 :=
{

(z1, z2)
∣∣ z2 > 0, |z1| < |z2|

}
,

A3 :=
{

(z1, z2)
∣∣ z1 ≤ 0, |z1| ≥ |z2|

}
\ {(0, 0)},

A4 :=
{

(z1, z2)
∣∣ z2 < 0, |z1| < |z2|

}
.
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Then v̄ can de defined as follows: (i) for (z1, z2) ∈ A1, let v̄ := (1, 0, 0, . . . , 0); (ii) for

(z1, z2) ∈ A2, let v̄ := (0,−1, 0, . . . , 0); (iii) for (z1, z2) ∈ A3, let v̄ := (−1, 0, 0, . . . , 0); (iv)

for (z1, z2) ∈ A4, let v̄ := (0, 1, 0, . . . , 0).

The following result shows that γ = Ω(1/d). Note that n could be as large as 2d, in which

case γ is basically O
(
1/ ln(n)

)
.

Proposition 4.6. For any (x, y) sampled from the noisy 2-XOR distribution and any d ≥ 3,

y

∫ 〈
v̄(z), x

〉
1
[
〈z, x〉 > 0

]
dµN (z) ≥ 1

60d
.

Proof. By symmetry, we only need to consider an (x, y) where (x1, x2, y) = (1/
√
d− 1, 0, 1).

Let zp,q denote (zp, zp+1, . . . , zq), and similarly define xp,q. We have

y

∫ 〈
v̄(z), x

〉
1
[
〈z, x〉 > 0

]
dµN (z)

= y

∫ (∫ 〈
v̄(z), x

〉
1
[
〈z, x〉 > 0

]
dµN (z3,d)

)
dµN (z1,2) (4.19)

= y

∫ 〈
v̄(z)1,2, x1,2

〉(∫
1
[〈
z1,2, x1,2

〉
+
〈
z3,d, x3,d

〉
> 0
]

dµN (z3,d)

)
dµN (z1,2) (4.20)

=
4∑
i=1

y

∫ 〈
v̄(z)1,2, x1,2

〉(∫
1
[〈
z1,2, x1,2

〉
+
〈
z3,d, x3,d

〉
> 0
]

dµN (z3,d)
)
1
[
z1,2 ∈ Ai

]
dµN (z1,2),

(4.21)

where eq. (4.19) is due to the independence between z1,2 and z3,d, and in eq. (4.20) we use

the fact that v̄(z)1,2 only depends on z1,2 and v̄(z)3,d are all zero. Since
〈
v̄(z)1,2, x1,2

〉
= 0

for z1,2 ∈ A2 ∪ A4, we only need to consider A1 and A3 in eq. (4.21). For simplicity, we will

denote z1,2 by p ∈ R2, and v̄(z)1,2 by v̄(p), and z3,d by q ∈ Rd−2.

For any nonzero p ∈ A1, we have −p ∈ A3, and
〈
v̄(p), x1,2

〉
= 1/

√
d− 1. Therefore

y
〈
v̄(p), x1,2

〉(∫
1
[〈
p, x1,2

〉
+
〈
q, x3,d

〉
> 0
]

dµN (q)

)
+ y

〈
v̄(−p), x1,2

〉(∫
1
[〈
−p, x1,2

〉
+
〈
q, x3,d

〉
> 0
]

dµN (q)

)
=

1√
d− 1

∫ (
1

[
p1√
d− 1

+
〈
q, x3,d

〉
> 0

]
− 1

[
−p1√
d− 1

+
〈
q, x3,d

〉
> 0

])
dµN (q)

=
1√
d− 1

P
(
−p1√
d− 1

≤
〈
q, x3,d

〉
≤ p1√

d− 1

)
. (4.22)

Let ϕ denote the density function of the standard Gaussian distribution, and for c > 0, let
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U(c) denote the probability that a standard Gaussian random variable lies in the interval

[−c, c]:

U(c) :=

∫ c

−c
ϕ(t) dt.

Since
〈
q, x3,d

〉
is a Gaussian variable with standard deviation

√
(d− 2)/(d− 1), we have

P
(
−p1√
d− 1

≤
〈
q, x3,d

〉
≤ p1√

d− 1

)
= U

(
p1√
d− 2

)
. (4.23)

Plugging eqs. (4.22) and (4.23) into eq. (4.21) gives:

y

∫ 〈
v̄(z), x

〉
1
[
〈z, x〉 > 0

]
dµN (z) =

1√
d− 1

∫
U

(
p1√
d− 2

)
1 [p ∈ A1] dµN (p)

=
1√
d− 1

∫ ∞
0

U

(
p1√
d− 2

)(∫ p1

−p1
ϕ(p2) dp2

)
ϕ(p1) dp1

=
1√
d− 1

∫ ∞
0

U

(
p1√
d− 2

)
U(p1)ϕ(p1) dp1

≥ 1√
d− 1

∫ 1

0

U

(
p1√
d− 2

)
U(p1)ϕ(p1) dp1.

For t ∈ [−1,+1], it holds that ϕ(t) ≥ 1
√

2πe, and thus

U(a) =

∫ a

−a
ϕ(t) dt ≥ 2a√

2πe
.

Therefore eq. (4.21) is lower bounded by

1√
d− 1

∫ 1

0

U

(
p1√
d− 2

)
U(p1)ϕ(p1) dp1 ≥

1√
d− 1

∫ 1

0

2√
2πe
· p1√

d− 2
· 2p1√

2πe
· 1√

2πe
dp1

≥ 1

20
√

(d− 1)(d− 2)

∫ 1

0

p2
1 dp1

=
1

60
√

(d− 1)(d− 2)

≥ 1

60d
.

QED.

We can prove two other interesting results for the noisy 2-XOR data.
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The width needs a poly(1/γ) dependency for initial separability. The first step of

an NTK analysis is to show that the gradient features at initialization
{(
∇fi(W0), yi

)}n
i=1

is

separable. Proposition 4.7 gives an example where
{(
∇fi(W0), yi

)}n
i=1

is nonseparable when

the network is narrow.

Proposition 4.7. Let D = {(xi, yi)}4
i=1 denote an arbitrary subset of the noisy 2-XOR

dataset such that xi’s have the same last (d − 2) coordinates. For any d ≥ 20, if m ≤
√
d− 2/4, then with probability 1/2 over the random initialization of W0, for any weights

V ∈ Rm×d, it holds that yi
〈
V,∇fi(W0)

〉
≤ 0 for at least one i ∈ {1, 2, 3, 4}.

For the noisy 2-XOR data, the separator v̄ has margin γ = Ω(1/d), and 1/γ = O(d). As a

result, if we want
{(
∇fi(W0), yi

)}n
i=1

to be separable, the width has to be Ω(1/
√
γ). For a

smaller width, gradient descent might still be able to solve the problem, but a beyond-NTK

analysis would be needed.

To prove Proposition 4.7, we need the following technical lemma.

Lemma 4.13. Given z1 ∼ N (0, 1) and z2 ∼ N (0, b2) that are independent where b > 1, we

have

P
(
|z1| < |z2|

)
> 1− 1

b
.

Proof. First note that for z3 ∼ N (0, 1) which is independent of z1,

P
(
|z1| < |z2|

)
= P

(
|z1| < b|z3|

)
= 1− P

(
|z3| <

1

b
|z1|
)
.

Still let ϕ denote the density of N (0, 1), and let U(c) denote the probability that z3 ∈ [−c, c].
We have

P
(
|z3| <

1

b
|z1|
)

=

∫ ∫
1

[
|z3| <

1

b
|z1|
]
ϕ(z3)ϕ(z1) dz3 dz1

=

∫
U

(
1

b
|z1|
)
ϕ(z1) dz1

≤ 2√
2πb

∫
|z1|ϕ(z1) dz1 =

2

πb
<

1

b
,

where we use the facts that U(c) ≤ 2c/
√

2π and E[|z1|] =
√

2/π. QED.

We now give the proof of Proposition 4.7 using Lemma 4.13.
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Proof of Proposition 4.7. By symmetry, we only need to consider the following training set:

x1 = (1, 0, 1, . . . , 1), y1 = 1,

x2 = (0, 1, 1, . . . , 1), y2 = −1,

x3 = (−1, 0, 1, . . . , 1), y3 = 1,

x4 = (0,−1, 1, . . . , 1), y4 = −1.

The 1/
√
d− 1 factor is omitted also because we only discuss the 0/1 loss.

For any s, let As denote the event that

1
[
〈ws, x1〉 > 0

]
= 1

[
〈ws, x2〉 > 0

]
= 1

[
〈ws, x3〉 > 0

]
= 1

[
〈ws, x4〉 > 0

]
.

We will show that if m ≤
√
d− 2/4, then As is true for all 1 ≤ s ≤ m with probability 1/2,

and Proposition 4.7 follows from the fact that the XOR data is not linearly separable.

For any s and i,

〈ws, xi〉 = (ws)1(xi)1 + (ws)2(xi)2 +
d∑
j=3

(ws)j.

Since
(
(xi)1, (xi)2

)
is (1, 0) or (0, 1) or (−1, 0) or (0,−1), event As will happen as long as

∣∣(ws)1

∣∣ <
∣∣∣∣∣∣
d∑
j=3

(ws)j

∣∣∣∣∣∣ , and
∣∣(ws)2

∣∣ <
∣∣∣∣∣∣
d∑
s=3

(ws)j

∣∣∣∣∣∣ .
Note that (ws)1, (ws)2 ∼ N (0, 1) while

∑d
j=3(ws)j ∼ N (0, d − 2). As a result, due to

Lemma 4.13,

P

∣∣(ws)1

∣∣ <
∣∣∣∣∣∣
d∑
j=3

(ws)j

∣∣∣∣∣∣
 = P

∣∣(ws)2

∣∣ <
∣∣∣∣∣∣
d∑
s=3

(ws)j

∣∣∣∣∣∣
 > 1− 1√

d− 2
.

Using a union bound, P(As) > 1 − 2/
√
d− 2. If m ≤

√
d− 2/4, then by a union bound

again,

P

 ⋃
1≤s≤m

As

 > 1− 2√
d− 2

m ≥ 1− 2√
d− 2

√
d− 2

4
=

1

2
.

111



QED.

A tight sample complexity upper bound for the infinite-width NTK. [74] give a

d2 sample complexity lower bound for any NTK classifier on the noisy 2-XOR data. It turns

out that γ could give a matching sample complexity upper bound for the NTK and SGD.

[74] consider the infinite-width NTK with respect to both layers. For the first layer, the

infinite-width NTK K1 is defined in Section 4.4, and the corresponding RKHS H and RKHS

mapping φ is defined in Section 4.1. For the second layer, the infinite width NTK is defined

by

K2

(
xi, xj

)
:= E

[
∂f(xi;W0, a)

∂a
,
∂f(xj;W0, a)

∂a

]
= Ew∼N (0,Id)

[
σ
(
〈w, xi〉

)
σ
(
〈w, xj〉

)]
.

The corresponding RKHS K and inner product 〈w1, w2〉K are given by

K :=

{
w : Rd → R

∣∣∣∣ ∫ w(z)2 dµN (z) <∞
}
, and 〈w1, w2〉K =

∫
w1(z)w2(z) dµN (z).

Given any x ∈ Rd, it is mapped into ψx ∈ K, where ψx(z) := σ
(
〈z, x〉

)
. It holds that

K2(xi, xj) = 〈ψxi , ψxj〉K. The infinite-width NTK with respect to both layers is just K1 +K2.

The corresponding RHKS is just H×K with the inner product

〈(v1, w1), (v2, w2)〉H×K = 〈v1, v2〉H + 〈w1, w2〉K.

The classifier v̄ constructed earlier has a unit norm (i.e., ‖v̄‖H = 1) and margin γ on the

space H. On H×K, it is enough to consider (v̄, 0), which also has a unit norm and margin

γ. Since the infinite-width NTK model is a linear model in H × K, Theorem 2.1 can be

used to show that SGD on the RKHS H × K could obtain a test error of ε with a sample

complexity of Õ(1/(γ2ε)). (The analysis of Theorem 2.1 is done in Rd, but it still works with

a well-defined inner product.) Since γ = Ω(1/d), to achieve a constant test accuracy we

need Õ(d2) samples. This matches (up to logarithmic factors) the sample complexity lower

bound of d2 given by [74].
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Chapter 5: Deep homogeneous networks

In this chapter, we analyze the implicit bias of gradient flow on deep networks. We focus

on gradient flow to illustrate the key proof ideas, but many results can be extended to

gradient descent with small enough learning rates.

First, in Section 5.1, we consider deep linear networks, which maps the input x to

WLWL−1 · · ·W2W1x, where W1, . . . ,WL denote L weight matrices (layers). A deep linear

network can still only represent a linear function, but it induces a nonconvex optimization

problem, which makes the analysis much trickier. We will show that, despite overparame-

terization and nonconvexity, under some mild conditions, gradient flow still learns a simple

solution: all weight matrices become nearly rank-1, adjacent weight matrices tend to have

identical top singular vectors, and the whole network computes the maximum-margin pre-

dictor (cf. Theorems 5.1 and 5.2).

In Section 5.2, we further extend the previous results to deep homogeneous networks. We

show that the gradient flow iterate wt and the corresponding (negative) gradient −∇R̂(wt)

converge to the same direction (cf. Theorem 5.3); this result implies the previous result for

deep linear networks, and can also be applied in many other settings.

5.1 ALIGNMENT IN DEEP LINEAR NETWORKS

In this section, as in Chapter 2, we consider a training set that is linearly separable, and

let γ∗ and u∗ denote the maximum margin and maximum-margin predictor.

A linear network of depth L is parameterized by weight matrices WL, . . . ,W1, where

Wk ∈ Rdk×dk−1 , d0 = d, and dL = 1. Let W = (WL, . . . ,W1) denote all parameters of the

network. The (empirical) risk induced by the network is given by

R̂(W ) = R̂ (WL, . . . ,W1) =
1

n

n∑
i=1

` (yiWL · · ·W1xi) =
1

n

n∑
i=1

`
(
〈wprod, zi〉

)
,

where wprod := (WL · · ·W1)>, and zi := yixi.

In this section, we consider loss functions satisfying the following conditions.

Assumption 5.1. `′ < 0 is continuous, limx→−∞ `(x) =∞ and limx→∞ `(x) = 0.

Moreover, we consider gradient flow
{
W (t)

∣∣t ≥ 0, t ∈ R
}

, which starts from some W (0)

at t = 0, and proceeds as
dW (t)

dt
= −∇R̂

(
W (t)

)
.
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We assume that the initialization of the network is not a critical point and induces a risk no

larger than the risk of the trivial linear predictor 0.

Assumption 5.2. The initialization W (0) satisfies ∇R̂
(
W (0)

)
6= 0 and R̂

(
W (0)

)
≤

R̂(0) = `(0).

It is natural to require that the initialization is not a critical point, since otherwise gradient

flow will never make a progress. The requirement R̂
(
W (0)

)
≤ R̂(0) can be easily satisfied,

for example, by making W1(0) = 0 and WL(0) · · ·W2(0) 6= 0. Alternatively, we can ensure

Assumption 5.2 using an NTK analysis.

For convenience, only within this section, we will use W , Wk, and wprod to denote W (t),

Wk(t) and wprod(t).

Previously, [96] considered gradient descent on fully connected linear networks and linear

convolutional networks. In particular, for the exponential loss, assuming the risk is min-

imized to 0 and the gradients converge in direction, they showed that the whole network

converges in direction to the maximum margin solution. These two assumptions are on the

gradient descent process itself; by contrast, in the following we will show alignment and

margin maximization results only assuming Assumption 5.2. The analysis is based on [31].

Additional related work. There has been a rich literature on linear networks. [97]

analyzed the learning dynamics of deep linear networks, showing that they exhibit some

learning patterns similar to nonlinear networks, such as a long plateau followed by a rapid risk

drop. [98] showed that depth can help accelerate optimization. On the landscape properties

of deep linear networks, [99, 100] showed that under various structural assumptions, all local

optima are global. [101] gave a necessary and sufficient characterization of critical points for

deep linear networks.

5.1.1 Risk convergence and layer alignment

One key property of gradient flow is that it never increases the risk:

dR̂(W )

dt
=

〈
∇R̂(W ),

dW

dt

〉
= −‖∇R̂(W )‖2

F = −
L∑
k=1

∥∥∥∥∥ ∂R̂∂Wk

∥∥∥∥∥
2

F

≤ 0. (5.1)

We now state the main result: under Assumptions 5.1 and 5.2, gradient flow minimizes the

risk, Wk and wprod all go to infinity, and the alignment phenomenon occurs.

Theorem 5.1. Under Assumptions 5.1 and 5.2, gradient flow iterates satisfy:
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• limt→∞ R̂(W ) = 0.

• For any 1 ≤ k ≤ L, limt→∞ ‖Wk‖F =∞.

• For any 1 ≤ k ≤ L, letting (uk, vk) denote the first left and right singular vectors of

Wk,

lim
t→∞

∥∥∥∥ Wk

‖Wk‖F
− ukv>k

∥∥∥∥
F

= 0.

Moreover, for any 1 ≤ k < L, limt→∞
∣∣〈vk+1, uk〉

∣∣ = 1. As a result,

lim
t→∞

∣∣∣∣∣∣
〈

wprod∏L
k=1 ‖Wk‖F

, v1

〉∣∣∣∣∣∣ = 1,

and thus limt→∞ ‖wprod‖2 =∞.

Theorem 5.1 is proved using two lemmas, which may be of independent interest. To

show the ideas, let us first introduce a little more notation. Recall that R̂(W ) denotes the

empirical risk induced by the deep linear network W . Abusing the notation a little, for

any linear predictor w ∈ Rd, we also use R̂(w) to denote the risk induced by w. With this

notation, R̂(W ) = R̂(wprod), while

∇R̂(wprod) =
1

n

n∑
i=1

`′
(
〈wprod, zi〉

)
zi =

1

n

n∑
i=1

`′ (WL · · ·W1zi) zi

is in Rd and different from ∇R̂(W ), which has
∑L

k=1 dkdk−1 entries, as given below:

∂R̂
∂Wk

= W>
k+1 · · ·W>

L∇R̂(wprod)>W>
1 · · ·W>

k−1.

Furthermore, for any R > 0, let

B(R) =

{
W

∣∣∣∣ max
1≤k≤L

‖Wk‖F ≤ R

}
.

First we show that for any R > 0, the time spent by gradient flow in B(R) is finite.

Lemma 5.1. Under Assumptions 5.1 and 5.2, for any R > 0, there exists a constant

ε(R) > 0, such that for any t ≥ 1 and any W ∈ B(R), ‖∂R̂/∂W1‖F ≥ ε(R). As a result,

gradient flow spends a finite amount of time in B(R) for any R > 0, and max1≤k≤L ‖Wk‖F
is unbounded.
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Proof of Lemma 5.1. Fix an arbitrary R > 0. If the claim is not true, then for any ε > 0,

there exists some t ≥ 1 such that ‖Wk‖F ≤ R for all k while
∥∥∥∂R̂/∂W1

∥∥∥2

F
≤ ε2, which means

∥∥∥∥∥ ∂R̂∂W1

∥∥∥∥∥
2

F

=
∥∥∥W>

2 · · ·W>
L∇R̂(wprod)>

∥∥∥2

F
=‖WL · · ·W2‖2

2

∥∥∥∇R̂(wprod)
∥∥∥2

2
≤ ε2.

Since ‖wprod‖2 ≤ RL, we have

〈∇R̂(wprod), u∗〉 =
1

n

n∑
i=1

`′
(
〈wprod, zi〉

)
〈zi, u∗〉 ≤

1

n

n∑
i=1

`′
(
〈wprod, zi〉

)
γ∗ ≤ −Mγ∗,

where −M = max−RL≤x≤RL `
′(x). Since `′ is continuous and the domain is bounded, the

maximum is attained and negative, and thus M > 0. Therefore
∥∥∥∇R̂(wprod)

∥∥∥
2
≥ Mγ∗, and

thus ‖WL · · ·W2‖2 ≤ ε/Mγ∗. Since ‖W1‖F ≤ R, we further have ‖wprod‖2 ≤ εR/Mγ∗. In

other words, after t = 1,
∥∥wprod

∥∥
2

may be arbitrarily small, which implies R̂
(
wprod

)
can be

arbitrarily close to R̂ (0).

On the other hand, by Assumption 5.2, dR̂(W )/ dt = −‖∇R̂(W )‖2
F < 0 at t = 0.

This implies that R̂
(
W (1)

)
< R̂

(
W (0)

)
, and for any t ≥ 1, R̂

(
W (t)

)
≤ R̂

(
W (1)

)
<

R̂
(
W (0)

)
≤ R̂(0), which is a contradiction.

Since the risk is always positive, we have

R̂
(
W (0)

)
≥
∫ ∞
t=0

L∑
k=1

∥∥∥∥∥ ∂R̂∂Wk

∥∥∥∥∥
2

F

dt

≥
∫ ∞
t=0

∥∥∥∥∥ ∂R̂∂W1

∥∥∥∥∥
2

F

dt

≥
∫ ∞
t=0

∥∥∥∥∥ ∂R̂∂W1

∥∥∥∥∥
2

F

1

[
max

1≤k≤L
‖Wk‖F ≤ R

]
dt

≥
∫ ∞
t=1

∥∥∥∥∥ ∂R̂∂W1

∥∥∥∥∥
2

F

1

[
max

1≤k≤L
‖Wk‖F ≤ R

]
dt

≥ ε(R)2

∫ ∞
t=1

1

[
max

1≤k≤L
‖Wk‖F ≤ R

]
dt,

which implies gradient flow spends a finite amount of time in
{
W
∣∣max1≤k≤L ‖Wk‖F ≤ R

}
.

This directly implies that max1≤k≤L ‖Wk‖F is unbounded. QED.

To proceed, we need the following properties of linear networks from prior work [98, 102].
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For any time t ≥ 0 and any 1 ≤ k < L,

W>
k+1(t)Wk+1(t)−W>

k+1(0)Wk+1(0) = Wk(t)W
>
k (t)−Wk(0)W>

k (0). (5.2)

To see this, just notice that

W>
k+1

∂R̂
∂Wk+1

= W>
k+1 · · ·W>

L∇R̂(wprod)>W>
1 · · ·W>

k =
∂R̂
∂Wk

W>
k .

Taking the trace on both sides of eq. (5.2), we have

∥∥Wk+1(t)
∥∥2

F
−
∥∥Wk+1(0)

∥∥2

F
=
∥∥Wk(t)

∥∥2

F
−
∥∥Wk(0)

∥∥2

F
. (5.3)

In other words, the difference between the squares of Frobenius norms of any two layers

remains a constant. Together with Lemma 5.1, it implies that all ‖Wk‖F are unbounded.

However, even if ‖Wk‖F are large, it does not follow necessarily that ‖wprod‖2 is also large.

Lemma 5.2 shows that this is indeed true: for gradient flow, as ‖Wk‖F get larger, adjacent

layers also get more aligned to each other, which ensures that their product also has a large

norm.

Given a matrix W , let ‖W‖σ denote its top singular value (the spectral norm). For

1 ≤ k ≤ L, let σk, uk, and vk denote the first singular value, the first left singular vector,

and the first right singular vector of Wk, respectively. Furthermore, define

D :=

(
max

1≤k≤L
‖Wk(0)‖2

F

)
− ‖WL(0)‖2

F +
L−1∑
k=1

∥∥∥Wk(0)W>
k (0)−W>

k+1(0)Wk+1(0)
∥∥∥
σ
,

which depends only on the initialization. If for any 1 ≤ k < L, it actually holds that

Wk(0)W>
k (0) = W>

k+1(0)Wk+1(0), then D = 0.

Lemma 5.2. The gradient flow iterates satisfy the following properties:

• For any 1 ≤ k ≤ L, ‖Wk‖2
F − ‖Wk‖2

σ ≤ D.

• For any 1 ≤ k < L, 〈vk+1, uk〉2 ≥ 1−
(
D + ‖Wk+1(0)‖2

σ + ‖Wk(0)‖2
σ

)
/‖Wk+1‖2

σ.

• Suppose max1≤k≤L ‖Wk‖F →∞, then

∣∣∣∣〈wprod/
∏L

k=1 ‖Wk‖F , v1

〉∣∣∣∣→ 1.

Proof. The first claim is true for k = L since WL is a row vector. For any 1 ≤ k < L, recall

that [98, 102] give the following relation:

W>
k+1(t)Wk+1(t)−W>

k+1(0)Wk+1(0) = Wk(t)W
>
k (t)−Wk(0)W>

k (0). (5.4)
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Let Ak,k+1 = Wk(0)W>
k (0) −W>

k+1(0)Wk+1(0). By eq. (5.4) and the definition of singular

vectors and singular values, we have

σ2
k ≥ v>k+1WkW

>
k vk+1

= v>k+1W
>
k+1Wk+1vk+1 + v>k+1Ak,k+1vk+1

= σ2
k+1 + v>k+1Ak,k+1vk+1

≥ σ2
k+1 − ‖Ak,k+1‖σ. (5.5)

Moreover, by taking the trace on both sides of eq. (5.4), we have

‖Wk‖2
F = tr

(
WkW

>
k

)
= tr

(
W>
k+1Wk+1

)
+ tr

(
Wk(0)W>

k (0)
)
− tr

(
W>
k+1(0)Wk+1(0)

)
= ‖Wk+1‖2

F + ‖Wk(0)‖2
F − ‖Wk+1(0)‖2

F . (5.6)

Summing eq. (5.5) and eq. (5.6) from k to L− 1, we get

‖Wk‖2
F − ‖Wk‖2

σ ≤ ‖Wk(0)‖2
F − ‖WL(0)‖2

F +
L−1∑
k′=k

‖Ak′,k′+1‖σ ≤ D. (5.7)

Next we prove that singular vectors get aligned. Consider u>kW
>
k+1Wk+1uk. On one hand,

similarly to eq. (5.5), we can get that

u>kW
>
k+1Wk+1uk = u>kWkW

>
k uk − u>kWk(0)W>

k (0)uk + u>kW
>
k+1(0)Wk+1(0)uk

≥ u>kWkW
>
k uk − u>kWk(0)W>

k (0)uk

≥ σ2
k − ‖Wk(0)‖2

σ. (5.8)

On the other hand, it follows from the definition of singular vectors and eq. (5.7) that

u>kW
>
k+1Wk+1uk = 〈uk, vk+1〉2σ2

k+1 + u>k

(
W>
k+1Wk+1 − vk+1σ

2
k+1v

>
k+1

)
uk

≤ 〈uk, vk+1〉2σ2
k+1 + ‖Wk+1‖2

F − ‖Wk+1‖2
σ

≤ 〈uk, vk+1〉2σ2
k+1 +D. (5.9)

Combining eq. (5.8) and eq. (5.9), we get

σ2
k ≤ 〈uk, vk+1〉2σ2

k+1 +D + ‖Wk(0)‖2
σ. (5.10)

Similarly to eq. (5.8), we can get σ2
k ≥ v>k+1WkW

>
k vk+1 ≥ σ2

k+1 − ‖Wk+1(0)‖2
σ, which further
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implies
σ2
k

σ2
k+1

≥ 1− ‖Wk+1(0)‖2
σ

σ2
k+1

. (5.11)

Combining eq. (5.10) and eq. (5.11), we finally get

〈uk, vk+1〉2 ≥ 1− D + ‖Wk(0)‖2
σ + ‖Wk+1(0)‖2

σ

σ2
k+1

.

Regarding the last claim, first recall that since the difference between the squares of

Frobenius norms of any two layers is a constant, max1≤k≤L ‖Wk‖F →∞ implies ‖Wk‖F →∞
for any k. We further have the following.

• Since ‖Wk‖2
F − ‖Wk‖2

σ ≤ D, ‖Wk‖2 →∞ for any k, and Wk/‖Wk‖F → ukv
>
k .

• Since ‖Wk‖σ →∞, |〈uk, vk+1〉| → 1.

As a result, ∣∣∣∣∣∣
〈

wprod∏L
k=1 ‖Wk‖F

, v1

〉∣∣∣∣∣∣ =

∣∣∣∣∣∣
〈

L∏
k=1

Wk

‖Wk‖F
, v1

〉∣∣∣∣∣∣
→

∣∣∣∣∣∣
〈

L∏
k=1

uiv
>
i , v1

〉∣∣∣∣∣∣
→ 1.

QED.

Now we are ready to prove Theorem 5.1.

Proof. Suppose for some ε > 0, R̂ (W ) ≥ ε for any t. Then there exists some 1 ≤ j ≤
n such that `

(
〈wprod, zj〉

)
≥ ε, and thus 〈wprod, zj〉 ≤ `−1(ε). On the other hand, since

R̂(W ) ≤ R̂(0) = `(0), `
(
〈wprod, zj〉

)
≤ n`(0), and thus 〈wprod, zj〉 ≥ `−1

(
n`(0)

)
. Let

−M = max`−1(n`(0))≤x≤`−1(ε/n) `
′(x) < 0, we have for any t,

〈∇R̂(wprod), u∗〉 =
1

n

n∑
i=1

`′
(
〈wprod, zi〉

)
〈zi, u∗〉 ≤

1

n

n∑
i=1

`′
(
〈wprod, zi〉

)
γ∗

≤ 1

n
`′
(
〈wprod, zj〉

)
γ∗

≤ −Mγ∗

n
< 0,
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and thus ‖∇R̂(wprod)‖2 ≥Mγ∗/n.

Similar to the proof of Lemma 5.2, we can show that if ‖Wk‖F →∞,∣∣∣∣∣∣
〈

(WL · · ·W2)>

‖Wk‖F · · · ‖W2‖F
, v2

〉∣∣∣∣∣∣→ 1.

In other words, there exists some C > 0, such that when min1≤k≤L ‖Wk‖F > C, it holds that

‖WL · · ·W2‖2 ≥ ‖Wk‖F · · · ‖W2‖F/2 > CL/2.

Lemma 5.1 shows that gradient flow spends finite time in
{
W
∣∣max1≤k≤L ‖Wk‖F ≤ R

}
for

any R > 0. Since the difference between the squares of Frobenius norms of any two layers is

a constant, gradient flow also spends a finite amount of time in
{
W
∣∣min1≤k≤L ‖Wk‖F ≤ C

}
.

Now we have

R̂
(
W (0)

)
≥
∫ ∞
t=0

L∑
k=1

∥∥∥∥∥ ∂R̂∂Wk

∥∥∥∥∥
2

F

dt

≥
∫ ∞
t=0

∥∥∥∥∥ ∂R̂∂W1

∥∥∥∥∥
2

F

dt

=

∫ ∞
t=0

‖WL · · ·W2‖2
2‖∇R̂(wprod)‖2

2 dt

≥
∫ ∞
t=0

‖WL · · ·W2‖2
2‖∇R̂(wprod)‖2

21

[
W

∣∣∣∣ min
1≤k≤L

‖Wk‖F > C

]
dt

≥
(
Mγ∗

n

)2
(
CL

2

)2 ∫ ∞
t=0

1

[
W

∣∣∣∣ min
1≤k≤L

‖Wk‖F > C

]
dt

=∞,

which is a contradiction. Therefore R̂(ε) → 0. This further implies ‖Wk‖F → ∞, since

R̂(W ) has no finite optimum. Finally, invoking Lemma 5.2 proves the final claim of Theo-

rem 5.1. QED.

5.1.2 Margin maximization

In [31], we also proved the following result.

Theorem 5.2. Suppose Assumption 5.2 and that the support vectors span Rd, for almost

all data and the exponential loss or logistic loss, we have limt→∞
∣∣〈v1, ū〉

∣∣ = 1, where v1 is

the first right singular vector of W1. As a result, limt→∞wprod/
∏L

k=1 ‖Wk‖F = ū.
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Note that Theorem 5.2 requires that the support vectors span Rd; later in Section 5.2.2,

we will show the same result without this condition, as a corollary of a general alignment

result for deep homogeneous networks.

5.2 ALIGNMENT IN DEEP HOMOGENEOUS NETWORKS

In this section, we consider L-homogeneous networks, meaning that given any input x

and any positive number c > 0, it holds that f(x; cW ) = cLf(x;W ). Examples include

deep networks, with linear and convolutional layers, max and average pooling layers, and

homogeneous activations, such as the identity activation x 7→ x, ReLU activation x 7→
max{0, x}, and more generally powers of ReLU x 7→ max{0, x}k. On the other hand,

homogeneity does not allow skip connections and bias vectors. Here is a typical homogeneous

network, where the activation σ is homogeneous:

x 7→ WLσ
(
WL−1σ

(
· · · σ(W1x) · · ·

))
.

For simplicity, in the following we assume f is twice continuously differentiable, even though

we can drop this condition by assuming certain definability conditions [32].

For simplicity, we will focus on the exponential loss, and let L denote the unnormalized

empirical risk

L(W ) :=
n∑
i=1

`
(
yif(xi;W )

)
=

n∑
i=1

exp
(
−yif(xi;W )

)
=

n∑
i=1

exp
(
−hi(W )

)
,

where we let hi(W ) := yif(xi;W ). In the following, we will not deal with yi and xi directly,

instead we will just consider hi, which are also positive homogeneous and twice differentiable.

We consider gradient flow over L:

dWt

dt
= −∇L(Wt).

Note that gradient flows over R̂ and L have the same path, and thus will not affect the

results we prove below. We further make the following assumption on the initialization:

Assumption 5.3. The initial iterate W0 satisfies L(W0) < `(0).

Note that Assumption 5.3 is stronger than Assumption 5.2. However, we can ensure

Assumption 5.3 using Theorem 5.1 or an NTK analysis.

In [32], we show the following result.
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Theorem 5.3. Under Assumption 5.3, if the network is twice differentiable, then −∇L(Wt)

and Wt become aligned to each other, meaning the angle between Wt and −∇L(Wt) con-

verges to zero.

Previously, [103] showed that subsequences of the gradient flow converge to KKT points

of the margin maximization problem. We note that alignment in Theorem 5.3 is in general a

stronger notion, in that it is unclear how to prove alignment as a consequence of convergence

to KKT points.

Below we first prove Theorem 5.3, and then apply it to show margin maximization for

deep linear networks. For simplicity, in this section we let ‖ · ‖ denote the `2 norm of vectors

or Frobenius norm of matrices.

5.2.1 Proof of Theorem 5.3

We first give the following technical result.

Lemma 5.3. Suppose f : Rk → R is differentiable and L-positively homogeneous for some

L > 0. Then ∇f is (L−1)-positively homogeneous: given any nonzero x and c > 0, we have

∇f(cx) = cL−1∇f(x).

If ∇f is also differentiable, then for any c > 0, it holds that

∇2f(cx) = cL−2∇2f(x).

Moreover, there exists Kσ > 0 such that for any ‖x‖ = 1, it holds that
∥∥∇2f(x)

∥∥
σ
≤ Kσ.

Proof. By definition,

lim
‖y‖↓0

f(x+ y)− f(x)−
〈
∇f(x), y

〉
‖y‖

= 0.

On the other hand, by homogeneity,

f(cx+ z)− f(cx)−
〈
cL−1∇f(x), z

〉
= cL

(
f

(
x+

z

c

)
− f(x)−

〈
∇f(x),

z

c

〉)
.

Therefore

lim
‖z‖↓0

f(cx+ z)− f(cx)−
〈
cL−1∇f(x), z

〉
‖z‖

= cL−1 lim
‖z‖↓0

f
(
x+ z

c

)
− f(x)−

〈
∇f(x), z

c

〉
‖z/c‖

= 0,
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which proves the claim. The homogeneity of ∇2f when it exists can be proved in the same

way.

To get Kσ, note that for any ‖x‖ = 1, there exists an open neighborhood Ux of x on which

∇f is Kx-Lipschitz continuous, and thus the spectral norm of ∇2f is bounded by Kx. All

the Ux form an open cover of the compact unit sphere, and thus has a finite subcover, which

implies the claim. QED.

We also define the following quantities, which will be useful in our analysis. Let

α(W ) := `−1
(
L(W )

)
= − ln

(
L(W )

)
, and β(W ) :=

〈
W,∇α(W )

〉
L

.

Lemma 5.4. If L(W ) < `(0), it holds that

0 < α(W ) ≤ min
1≤i≤n

hi(W ) ≤ β(W ) ≤ α(W ) + ln(n).

Proof. Note that α(W ) = − ln
(
L(W )

)
> − ln

(
`(0)

)
= 0. Moreover,

β(W ) =
1

L

n∑
i=1

exp
(
−hi(W )

)∑n
i′=1 exp

(
−hi′(W )

) 〈W,∇hi(W )
〉

=
n∑
i=1

exp
(
−hi(W )

)∑n
i′=1 exp

(
−hi′(W )

)hi(W ),

where we use Euler’s homogeneous function theorem. Therefore

α(W ) = − ln

 n∑
i=1

exp
(
−hi(W )

) ≤ min
1≤i≤n

hi(W ) ≤ β(W ).

Finally, since the ln-sum-exp function is convex, we have

ln(n) + α(W ) = ln

 n∑
i=1

exp(0)

− ln

 n∑
i=1

exp
(
−hi(W )

)
≥

n∑
i=1

exp
(
−hi(W )

)∑n
i′=1 exp

(
−hi′(W )

)hi(W ) = β(W ).

QED.

Next we estimate various quantities using Lemmas 5.3 and 5.4.

Lemma 5.5. For any W which satisfies L(W ) < `(0), it holds that β(W )/‖W‖L and∥∥∇α(W )
∥∥ /‖W‖L−1 are bounded.
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Proof. Since hi(W ) is continuous, it is bounded on the unit sphere. Because it is L-positively

homogeneous, hi(W )/‖W‖L is bounded on Rk. Lemma 5.4 implies that β(W ) − ln(n) ≤
α(W ) ≤ min1≤i≤n hi(W ), and it follows that β(W )/‖W‖L is bounded.

Recall that

∇α(W ) =
n∑
i=1

exp
(
−hi(W )

)∑n
i′=1 exp

(
−hi′(W )

)∇hi(W ),

Moreover, Lemma 5.3 implies that all
∥∥∇hi(W )

∥∥ /‖W‖L−1 are bounded. Consequently,∥∥∇α(W )
∥∥ /‖W‖L−1 is bounded. QED.

Next we define the following quantity J ; it generalizes the dual objective in the linear

case (cf. Section 2.2), and is crucial in our analysis.

J (W ) :=

∥∥∇α(W )
∥∥2

‖W‖2L−2
. (5.12)

Lemma 5.6. For any W satisfying L(W ) < `(0),

〈
∇J (W ),−∇L(W )

〉
≤ KL(W )‖W‖L−2 sin(θ)2

for some constant K > 0, where θ denotes the angle between W and −∇L(W ).

Proof. For simplicity, let π(ξ) := − ln
(∑n

i=1 exp(−ξi)
)
. It holds that π is concave, and

∇α(W ) =
n∑
i=1

∂π

∂hi
∇hi(W ). (5.13)

Since ∇hi are also differentiable at W , we have

∇2α(W ) =
n∑
i=1

n∑
j=1

(
∂2π

∂hi∂hj
∇hi(W )∇hj(W )>

)
+

n∑
i=1

∂π

∂hi
∇2hi(W ). (5.14)

On the other hand, let W̃ = W/‖W‖, we have

∇J (W ) =
2∇2α(W )∇α(W )

‖W‖2L−2
−
∥∥∇α(W )

∥∥2

‖W‖4L−4
· (2L− 2)‖W‖2L−3W̃

=
2∇2α(W )∇α(W )

‖W‖2L−2
−

(2L− 2)
∥∥∇α(W )

∥∥2

‖W‖2L
W,
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and thus

‖W‖2L

2

〈
∇J (W ),−∇L(W )

〉
L(W )

=
‖W‖2L

2

〈
∇J (W ),∇α(W )

〉
= ‖W‖2∇α(W )>∇2α(W )∇α(W )− (L− 1)

∥∥∇α(W )
∥∥2 〈

W,∇α(W )
〉
. (5.15)

Comparing eqs. (5.14) and (5.15), first note that

n∑
i=1

n∑
j=1

∂2π

∂hi∂hj
∇α(W )>∇hi(W )∇hj(W )>∇α(W ) ≤ 0,

since π is concave. Moreover by eq. (5.13),

〈
W,∇α(W )

〉
=

n∑
i=1

∂π

∂hi

〈
W,∇hi(W )

〉
= L

n∑
i=1

∂π

∂hi
hi(W ).

Therefore eq. (5.15) is upper bounded by

‖W‖2

n∑
i=1

∂π

∂hi
∇α(W )>∇2hi(W )∇α(W )− L(L− 1)

∥∥∇α(W )
∥∥2

n∑
i=1

∂π

∂hi
hi(W ). (5.16)

Let ∇rα(W ) and ∇⊥α(W ) denote the radial and spherical part of ∇α(W ). Let θ denote

the angle between W and ∇α(W ). Lemma 5.4 and the definition of β(W ) imply that

〈
W,∇α(W )

〉
= Lβ(W ) > 0,

and thus θ is between 0 and π/2. Now Lemma 5.3 implies that

‖W‖2∇rα(W )>∇2hi(W )∇rα(W ) = cos(θ)2
∥∥∇α(W )

∥∥2
W>∇2hi(W )W

= cos(θ)2
∥∥∇α(W )

∥∥2 · L(L− 1)hi(W )

≤
∥∥∇α(W )

∥∥2 · L(L− 1)hi(W ). (5.17)

Moreover,

2‖W‖2∇⊥α(W )>∇2hi(W )∇rα(W ) = 2‖W‖
∥∥∇α(W )

∥∥ cos(θ)
〈
∇⊥α(W ),∇2hi(W )W

〉
= 2(L− 1)‖W‖

∥∥∇α(W )
∥∥ cos(θ)

〈
∇⊥α(W ),∇hi(W )

〉
,
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and thus by the definition of β(W ),

2‖W‖2

n∑
i=1

∂π

∂hi
∇⊥α(W )>∇2hi(W )∇rα(W )

= 2(L− 1)‖W‖
∥∥∇α(W )

∥∥ cos(θ)
〈
∇⊥α(W ),∇α(W )

〉
= 2(L− 1)‖W‖

∥∥∇α(W )
∥∥3

cos(θ) sin(θ)2

= 2L(L− 1)
∥∥∇α(W )

∥∥2
sin(θ)2β(W ). (5.18)

In addition, Lemma 5.3 ensures that ‖∇2f‖σ has a uniform bound Kσ on the unit sphere,

therefore

‖W‖2

n∑
i=1

∂π

∂hi
∇⊥α(W )>∇2hi(W )∇⊥α(W ) ≤ ‖W‖2

∥∥∇α(W )
∥∥2

sin(θ)2 ·Kσ‖W‖L−2

= Kσ‖W‖L
∥∥∇α(W )

∥∥2
sin(θ)2. (5.19)

Combining eqs. (5.15) to (5.19) gives〈
∇J (W ),−∇L(W )

〉
L(W )

≤
4
(
Kσ‖W‖L + L(L− 1)β(W )

)∥∥∇α(W )
∥∥2

‖W‖2L
sin(θ)2.

Invoking Lemma 5.5 then gives

〈
∇J (W ),−∇L(W )

〉
≤ −KL(W )‖W‖L−2 sin(θ)2

for some constant K > 0. QED.

To continue, we need a little more notation. Let α̃(W ) := α(W )
‖W‖L . Next we note that the

gradients of α and α̃ are strongly related.

Lemma 5.7. For any nonzero W ∈ Rk, we have

∇rα̃(W ) = L
β(W )− α(W )

‖W‖L+1
W̃ , and ∇⊥α̃(W ) =

∇⊥α(W )

‖W‖L
.

Moreover,

dα̃t
dt

=
∥∥∇rα̃(Wt)

∥∥∥∥∇rL(Wt)
∥∥+

∥∥∇⊥α̃(Wt)
∥∥∥∥∇⊥L(Wt)

∥∥ .
Proof. Note that given W 6= 0, α is differentiable at W if and only if α̃ is differentiable at
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W , and when both gradients exist,

∇α̃(W ) =
∇α(W )

‖W‖L
− α(W ) · L‖W‖L−1W̃

‖W‖2L
=
∇α(W )

‖W‖L
− Lα(W )W̃

‖W‖L+1
.

The first claim of Lemma 5.7 then follows from the definition of β(W ). The second claim is

trivial. For the final claim, note that

dα̃(Wt)

dt
=
〈
∇α̃(Wt),−∇L(Wt)

〉
=
〈
∇rα̃(Wt),−∇rL(Wt)

〉
+
〈
∇⊥α̃(Wt),−∇⊥L(Wt)

〉
.

By Lemma 5.4 and the first claim of Lemma 5.7, both
〈
∇rα̃(Wt), W̃t

〉
and

〈
−∇rL(Wt), W̃t

〉
are nonnegative, and thus

〈
∇rα̃(Wt),−∇rL(Wt)

〉
=
∥∥∇rα̃(Wt)

∥∥∥∥∇rL(Wt)
∥∥ .

The second claim of Lemma 5.7 also implies that ∇⊥α̃(Wt) and −∇⊥L(Wt) point to the

same direction, and thus

〈
∇⊥α̃(Wt),−∇⊥L(Wt)

〉
=
∥∥∇⊥α̃(Wt)

∥∥∥∥∇⊥L(Wt)
∥∥ .

QED.

Next we control θt, the angle between Wt and −∇L(Wt), using Lemma 5.7.

Lemma 5.8. If L(W0) < `(0), then it holds that∫ ∞
0

L(Wt)‖Wt‖L−2 tan(θt)
2 dt <∞.

Proof. Lemma 5.7 implies that

dα̃t
dt
≥
∥∥∇⊥α̃(Wt)

∥∥∥∥∇⊥L(Wt)
∥∥ =

∥∥∇⊥α(Wt)
∥∥∥∥∇⊥L(Wt)

∥∥
‖Wt‖L

=
L(Wt)

∥∥∇⊥α(Wt)
∥∥2

‖Wt‖L
,

and moreover
∥∥∇⊥α(Wt)

∥∥ =
∥∥∇rα(Wt)

∥∥ tan(θt) = Lβ(Wt)
‖Wt‖ tan(θt), therefore

dα̃t
dt
≥ L(Wt) · L2 tan(θt)

2 β(Wt)
2

‖Wt‖L+2
.

Since α̃t is monotonically nondecreasing with a limit a [103, Theorem 4.1], it also follows

that β(Wt)/‖Wt‖L ≥ α̃(Wt) ≥ α̃(W0) > 0, and the proof is finished. QED.
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Now we can prove Theorem 5.3.

Proof of Theorem 5.3. Fix an arbitrary ε ∈ (0, 1), and let Jt denote J (Wt). Recall that

limt→∞ α(Wt)/‖Wt‖L = a. Lemma 5.4 then implies limt→∞ β(Wt)/‖Wt‖L = a, and thus we

can find t1 such that for any t > t1,

a

(
1− ε

6

)
<
β(Wt)

‖Wt‖L
=

1

L

〈
∇α(Wt)

‖Wt‖L−1
,

Wt

‖Wt‖F

〉
< a

(
1 +

ε

6

)
. (5.20)

Moreover, Lemmas 5.6 and 5.8 imply that there exists t2 such that for any t′ > t > t2,

Jt′ − Jt <
(
aLε

6

)2

. (5.21)

[103, Corollary C.10] implies that there exists t3 > max{t1, t2} such that

1

cos(θt2)
2
− 1 <

ε

3
, and thus

1

cos(θt2)
< 1 +

ε

6
. (5.22)

We claim that δt < 1 + ε for any t > t3.

To see this, note that eqs. (5.20) and (5.22) imply

√
Jt2 =

∥∥∇α(Wt2)
∥∥

‖Wt2‖L−1
< aL

(
1 +

ε

6

)
1

cos(θt2)
< aL

(
1 +

ε

6

)2

< aL

(
1 +

ε

2

)
.

Moreover, using eq. (5.21), for any t > t2,

√
Jt =

√
Jt2 + Jt − Jt2 <

√
Jt2 +

(
γLε

6

)2

<
√
Jt2 +

aLε

6
< aL

(
1 +

2ε

3

)
,

and thus

1

cos(θt)
=

√
Jt

Lβ(Wt)/‖Wt‖L
<
aL
(
1 + 2ε/3

)
aL(1− ε/6)

< 1 + ε.

Since ε is arbitrary, we have limt→∞ θt = 0. QED.

5.2.2 Application to deep linear networks

Recall that Theorem 5.1 implies wprod becomes aligned with v1, the top right singular vec-

tor of W1. Moreover, since W1 and ∂L/∂W1 become aligned as ensured by Theorem 5.3, and

since ∂R̂/∂W1 = W>
2 · · ·W>

L∇R̂(wprod)>, it follows that v1 becomes aligned with∇R̂(wprod),
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and thus wprod becomes aligned with ∇R̂(wprod). In other words, wprod asymptotically sat-

isfies the duality condition of the margin maximization problem (cf. Lemma 2.3), and thus

wprod converges to the maximum-margin predictor.

5.2.3 Directional convergence

Note that Theorem 5.3 only shows Wt and −∇L(Wt) converges to the same direction, but

it does not show if Wt itself converges to a fixed direction, i.e., if Wt/‖Wt‖F converges to

a fixed point over the unit sphere. This property is called “directional convergence”; it is

often assumed throughout the literature [96, 104], but has only been established for linear

predictors [16]. It is tricky to prove because it may still be false for highly smooth functions:

for instance, the homogeneous Mexican Hat function satisfies all our assumptions except

definability, and can be adjusted to have arbitrary order of continuous derivatives, but its

gradient flow does not converge in direction, instead it spirals [103]. In [32], we proved

directional convergence under an additional assumption of o-minimal definability which is

mild and satisfied by most practical neural networks; see [32, Appendix B] for details. As

mentioned above, the twice differentiability condition in Theorem 5.3 can also be replaced

with definability and locally Lipschitz gradients; see [32, Section 4] for details.

5.3 FUTURE DIRECTIONS

In this chapter, we summarize our implicit bias results of GD on deep networks. However,

these results are still not satisfactory enough: even though they are true as t →∞, it may

actually take a really long time for these alignment phenomena to happen. This is in contrast

to the NTK-style analysis given in Chapter 4: an NTK analysis basically only uses the power

of random features at initialization, but in practice these features do change during training,

and they can often be better than the random features at initialization [105]. It is very

interesting to formally study how the features evolve after the initial NTK phase of training,

and understand when and why they are better than random features.
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Appendix A: Technical lemmas

Here are some technical results needed in this thesis.

Lemma A.1. Let r, ρ > 0 be given, then

2

ρ
(1− e−rρ) ≤
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`log
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ρ
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Proof. First note that by symmetry,∫ 2π

0

`log

(
rρ
∣∣cos(θ)

∣∣) r dθ = 4

∫ π
2

0

`log

(
rρ cos(θ)

)
r dθ.

On the upper bound, note that `log

(
rρ cos(θ)

)
is increasing as θ goes from 0 to π

2
, and

moreover sin(θ) ≥
√

2
2

for θ ∈
(
π
4
, π

2

)
, therefore

4

∫ π
2

0

`log

(
rρ cos(θ)

)
r dθ ≤ 8

∫ π
2

π
4

`log

(
rρ cos(θ)

)
r dθ ≤ 8

√
2

ρ

∫ π
2

π
4

`log

(
rρ cos(θ)

)
rρ sin(θ) dθ.

Also because `log(z) ≤ exp(−z),∫ 2π
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On the lower bound, note that `log(z) ≥ 1
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exp(−z) for z ≥ 0, therefore
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QED.

Lemma A.2. Given w,w′ ∈ Rd, suppose Pr(x,y)∼P

(
y 6= sign

(
〈w, x〉

))
= OPT. If ‖x‖2 ≤ B

almost surely, then

E(x,y)∼P

[
1y 6=sign(〈w,x〉)

∣∣〈w′, x〉∣∣] ≤ B‖w′‖2 ·OPT.

If Px is (α1, α2)-sub-exponential, and OPT ≤ 1
e
, then
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∣∣〈w′, x〉∣∣] ≤ (1 + 2α1)α2‖w′‖2 ·OPT · ln
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Proof. If ‖x‖2 ≤ B almost surely, then
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1y 6=sign(〈w,x〉)

∣∣〈w′, x〉∣∣] ≤ B‖w′‖2E(x,y)∼P
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1y 6=sign(〈w,x〉)

]
= B‖w′‖2 ·OPT.

Below we assume Px is (α1, α2)-sub-exponential.

Let νx := 〈w′, x〉; we first give some tail bounds for νx. Since Px is (α1, α2)-sub-exponential,

for any t > 0, we have
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Let µ(t) := Pr
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)
. Given any threshold τ > 0, integration by parts gives
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Now let τ := α2‖w′‖2 ln
(

1
OPT

)
. Note that

E(x,y)∼P
[
1y 6=sign(〈w,x〉)
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[
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.

We bound the two parts separately. When |νx| ≤ τ , we have
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On the other hand, when |νx| ≥ τ , eq. (A.1) gives

E(x,y)∼P

[
1|νx|≥τ1y 6=sign(〈w,x〉)|νx|

]
≤ E

[
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]
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)
,

where we also use OPT ≤ 1
e
. To sum up,

E(x,y)∼P

[
1y 6=sign(〈w,x〉)

∣∣〈w′, x〉∣∣] ≤ (1 + 2α1)α2‖w′‖2 ·OPT · ln
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)
.

QED.
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