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1 Introduction

Deep neural networks have achieved great empirical successes in recent years. They form the
backbone of many state-of-the-art algorithms in computer vision, natural language process-
ing and reinforcement learning, which further have many applications in object detection,
machine translation, self-driving cars, etc.

Meanwhile, theoretical analysis of neural networks still lags far behind practice. Impor-
tant questions are not fully answered in all core parts of learning theory:

• Optimization: our ultimate goal is to find a model which has a small test error, i.e.,
a good accuracy on future/unseen data. However, we cannot minimize the test error
directly; typically we have a training set, and first minimize the training error. In deep
learning, the training error is usually highly nonconvex, but standard optimization
algorithms such as gradient descent usually work pretty well, even though they have
no convergence guarantee in a general nonconvex setting. Why is training feasible in
deep learning?

• Generalization: suppose we can achieve a low training error, the next step is to ensure
a low generalization error, i.e., a small difference between the training error and test
error. There are many classical tools to bound the generalization error, such as the
VC dimension bound: it depends on the number of parameters in a network, and
will be small if the network can only represent a limited number of sign patterns.
However, in practice, the number of weights in a network is usually much larger than
the number of training examples, and the network can even fit random labels (Zhang
et al., 2016). Therefore we cannot directly apply the VC dimension bound to explain
the good generalization of deep networks. How to give a fine-grained analysis of the
good generalization of deep networks?

• Representation: it is well-established that a neural network with only one hidden layer
and a non-polynomial activation can already approximate any continuous function
(Leshno et al., 1993). In practice, deep networks can also usually achieve zero training
error. However, classical representation results usually suffer from the curse of dimen-
sion: to achieve an approximation error of ε with input dimension d, in the worse case
Ω(1/εd) nodes are needed. In addition, even if there exists a good representation, it
is still unclear if it can be found by a practical algorithm. How to avoid the curse of
dimension, and how to build a representation theory within the range reachable by the
training algorithm?

To attack the above problems, we suggest studying optimization, generalization, and
representation of deep networks simultaneously. In this manuscript, we will summarize the
progress made so far, and also discuss a few potential future directions. Most discussion
will be focused on gradient descent (GD) and stochastic gradient descent (SGD), since they
are already very successful in practice despite their simplicity, and lots of research has been
done on them. On the other hand, there are many other interesting and efficient algorithms,
which will also be briefly discussed.

Here we briefly describe the methodologies and results. Roughly speaking, the training
process of a deep network using gradient descent have an early phase and a late phase.
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The early phase. This phase is often handled using the neural tangent kernel (Jacot
et al., 2018), or the NTK, which is very influential in recent years. In this analysis, the
first observation is that the linearized model at initialization (i.e., the first-oder Taylor ap-
proximation around the initialization) is already strong enough to give zero training error
(Du et al., 2018c), as long as the network is wide enough. More precisely, if we use a linear
model with the random features given by the initialization, we can already fit any training
data. The optimization and generalization analysis for this linearized model is also relatively
simple, since linear models are well-studied. Specifically, the test error bound would depend
on the inverse NTK margin (cf. Section 3.2.3).

The next observation is that, once again with a wide enough network, if we also choose a
suitable initialization and learning rate, then the gradient descent path on the true network
will be close to the gradient descent path on the linearized model, for a period that is long
enough to guarantee a low training error and even low test error (Li and Liang, 2018; Du
et al., 2018c,b; Allen-Zhu et al., 2018b; Zou et al., 2018; Allen-Zhu et al., 2018a; Arora et al.,
2019b). The pitfall is that, these analyses usually require the width of the network to be
polynomial in the number of training examples, or the inverse failure probability, or the
inverse target error; such a large width is never used in practice.

In (Ji and Telgarsky, 2019b), we prove that for binary classification, it is actually enough
to have the width depend polylogarithmically on all of the aforementioned parameters; the
width only needs to depend polynomially on the inverse NTK margin, which is necessary if
we want to use an NTK-style analysis. We also provide sample complexity bounds for GD
and SGD, and moreover prove that our SGD sample complexity bound is tight in the NTK
regime, which suggests that our analysis captures the full power of the NTK in some cases.

The late phase. The NTK analysis requires the weights to stay close to initialization.
For a fixed number of training iterations, this can be true if the network is wide enough.
However, in practice people keep training as long as their computational budget allows
(Shallue et al., 2018); in this setting, the norm of weights will keep increasing to infinity
with the cross entropy loss, and therefore the underlying assumption of the NTK cannot
hold forever. Moreover, as shown in (Arora et al., 2019a), finite-width deep networks usually
work better than the corresponding infinite-width networks/NTK. Consequently, finite-width
neural networks must have some special properties beyond the NTK.

Motivated by the empirical success of gradient descent, we study the implicit bias of
gradient descent: that is, among all low-training-error solutions, we try to prove that gradient
descent prefers “simple” solutions, and thus generalize well on unseen data. In particular,
we prove that in some cases, gradient descent can find the global maximum margin, which
could be much larger than the NTK margin. A test error bound then follows from standard
margin-based bounds (Bartlett et al., 2017).

Here is a summary of recent results on the implicit bias and margin maximization of
gradient descent:

• Soudry et al. (2018) prove that with linear classifiers, linearly separable data and
exponentially-tailed losses, gradient descent converges in direction to the `2-maximum-
margin direction.
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• Still with linear classifiers, in (Ji and Telgarsky, 2018b), we further characterize the
implicit bias of gradient descent for general nonseparable data, and in (Ji and Telgar-
sky, 2019a), we show that a dual-based analysis can further characterize the implicit
bias for general non-exponentially-tailed losses, and establish faster rates for margin
maximization and convergence to the implicit bias.

• Surprisingly, margin maximization still holds for deep linear networks (Gunasekar et al.,
2018b; Ji and Telgarsky, 2018a) and 2-homogeneous networks (Chizat and Bach, 2020),
and can be generalized in a certain form to deep homogeneous networks which allows
ReLU, max-pooling, etc. (Lyu and Li, 2019; Ji and Telgarsky, 2020), even though the
objective function is nonconvex in such settings. In particular, we prove directional con-
vergence and alignment for general homogeneous models in (Ji and Telgarsky, 2020),
which generalize most prior implicit bias results.

Here is an outline of this manuscript. In Section 2, we introduce the problem setting.
In Section 3, we focus on the neural tangent kernel, and discuss existing results and open
directions. The implicit bias and margin maximization properties of gradient descent are
covered in Section 4. In Section 5, we explore other interesting open directions.

2 Preliminaries

2.1 Supervised learning

In this manuscript, we focus on supervised learning. Other models such as unsupervised
learning and reinforcement learning are also very interesting to study, but we will not discuss
them in detail here.

We are given a feature space X ⊂ Rd, a label space Y (with concrete examples given

below), and a joint distribution D on X ×Y . We want to learn a function f : X → Ŷ which

matches the distribution D, where Ŷ denotes the output space of f , which may or may not
be the same as Y (see examples below). Formally, we have a loss function ` : Ŷ × Y → R,
and we try to minimize the risk of f , defined as

R(f) := E(x,y)∼D
[
`(f(x), y)

]
.

Here are some concrete examples:

• Regression: here we have Y = Ŷ = Rm, and a commonly-used loss is the squared loss :

`
(
f(x), y

)
:=

1

2

∥∥f(x)− y
∥∥2

2
.

• Classification: here the label space is a finite space Y = {1, 2, . . . ,m}, while Ŷ is
usually Rm, with the cross entropy loss :

`
(
f(x), y

)
:= − ln

(
exp(f(x)y)∑m
j=1 exp(f(x)j)

)
.

Other loss functions and learning problems are discussed in Section 5.
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2.2 Function classes

In this manuscript, we try to find a risk-minimizing f which lies in a certain parameterized
function class F . For example, the class of linear classifiers is parameterized by a weight
vector w ∈ Rd:

Flin :=
{
x 7→ 〈w, x〉

∣∣∣w ∈ Rd
}
,

while the class of deep fully-connected neural networks is parameterized by weight matrices
Wk and bias vectors bk:

Fnn :=
{
x 7→ WLσL−1(· · ·W2σ1(W1x+ b1) + b2 · · · ) + bL

}
,

where Wk ∈ Rmk×dk (particularly, d1 = d), and bk ∈ Rmk , and σk : Rmk → Rdk+1 are
(nonlinear) activation functions, such as ReLU, max-pooling, etc. Note that Flin and Fnn

defined here are quite general, and we will almost always add more constraints. Other
models, such as convolutional networks and residual networks, will also be discussed.

2.3 Empirical risk minimization

To find a good f , we sample a training set S = {(xi, yi)}ni=1 from the distribution D, and
try to minimize the empirical risk :

R̂S(f) :=
1

n

n∑
i=1

`(f(xi), yi).

For simplicity, we often just use R̂(f). With the notion of empirical risk, we can give a
formal description of the problems of representation, optimization and generalization: given
a training set S, suppose our learning algorithm finds a solution fS. Note that

R(fS) =
(
R(fS)− R̂S(fS)

)
+
(
R̂S(fS)− R̂S(f ∗)

)
+
(
R̂S(f ∗)−R(f ∗)

)
+R(f ∗),

where f ∗ is an arbitrary fixed member of F . If we can ensure all four parts on the right
hand side are small, then R(fS) is small.

1. The first part gives the problem of generalization. It looks similar to the third part;
however, as |S| → ∞, the third part converges to 0 due to the law of large numbers,
while it is unclear whether the first part also converges to 0 since fS depends on S.

2. The second part corresponds to optimization; it is small if we can minimize the empir-
ical risk on F .

3. The fourth part is called representation; it basically asks whether the function class is
powerful enough to minimize the true risk.

Representation, optimization and generalization are often studied independently. However,
as discussed in the introduction, to build a satisfactory theory for deep learning, it looks
necessary to analyze them together. For example, an optimization analysis usually requires
a representation result, and gives some norm and margin bounds which can be used to prove
a generalization bound.
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2.4 Gradient flow, gradient descent, and stochastic gradient de-
scent

To minimize the empirical risk, it is usually enough to use first-order methods. Suppose the
function/predictor f is parameterized by a weight vector w, i.e., f is a function of the input
x and weight vector w, and we can write fw(x) = f(x,w), and

R̂(w) = R̂(fw) =
1

n

n∑
i=1

`
(
f(xi, w), yi

)
.

The simplest algorithm is gradient descent (GD): we start from some initialization w0,
and for any t ≥ 0, let

wt+1 := wt − ηt∇R̂(wt), (1)

where ηt > 0 is the step size / learning rate. When ηt → 0, i.e., when we consider infinitesimal
step sizes, then we get gradient flow: it is the solution to the following differential equation

dwt
dt

= −∇R̂(wt). (2)

Gradient flow can usually simplifies the analysis a lot and illustrate the main ideas. However,
we should be cautious when applying gradient-flow results to gradient descent: the second-
order error term in the discrete-time case can sometimes be hard to control.

In the literature, stochastic gradient descent (SGD) may have two different meanings:
the first one assumes that at step t, we have a fresh sample (xt, yt) ∼ D, and do

wt+1 := wt − ηt
∂`
(
f(xt, w), yt

)
∂w

∣∣∣∣∣
w=wt

.

The second meaning of SGD, which is also what people use in practice, assumes that we
have a training set S, and in each epoch of training, S is randomly decomposed into batches
S1, . . . , SB, and we just do B steps of GD where R̂Sb

is used in the b-th step. In this
manuscript we will use the first meaning of SGD, but it is very interesting and important to
handle the second SGD.

Other training algorithms, such as the momentum and adaptive gradient methods, will
be discussed in Section 5.

3 The neural tangent kernel

Let us first discuss the intuition behind the neural tangent kernel. For simplicity, suppose
the network has a 1-dimensional output.

Note that with linear predictors and convex loss functions, the empirical risk R̂ is also
convex, and there are many tools from convex optimization to analyze it. However, deep
networks are highly nonlinear functions, and R̂ is highly nonconvex in this setting, which
makes it hard to analyze. To solve this issue, one way is to consider the linearization of
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a network around its initialization: given a classifier f(w;x) where w denotes the weight
vector and x denotes the input, let w0 denote the initialization, then by Taylor’s theorem,

f(w;x) ≈ f(w0;x) + 〈∇f(w0;x), w − w0〉. (3)

The right hand side of eq. (3) is basically the neural tangent model. It also has a kernel
formulation, which will be introduced in Section 3.1, called the neural tangent kernel ; for
simplicity, in the following we will mostly use “NTK” to refer to this linearization idea.

An NTK analysis of GD roughly consists of the following steps: (i) show that in the
overparameterized regime (i.e., when the width is large), with high probability over the
Gaussian initialization of w0, on the linear model with features given by ∇f(w0;x), GD can
minimize the empirical risk to 0; (ii) prove that with overparameterization, GD iterates on
the neural network are close to GD iterates on the linear model in (i).

Below we discuss the above ideas in more detail on a two-layer network. As in (Du
et al., 2018c; Arora et al., 2019b; Ji and Telgarsky, 2019b), the network has weight matrices
W ∈ Rm×d and a ∈ Rm, and outputs

f(x;W,a) :=
1√
m

m∑
s=1

asσ
(
〈ws, x〉

)
, (4)

with initialization

ws,0 ∼ N (0, Id), and as ∼ unif
(
{−1,+1}

)
,

where ws,t denotes the s-th row of W at step t. (It turns out that this specific initialization
and the 1/

√
m factor induce the NTK behavior (Chizat et al., 2019).) We consider the

ReLU activation σ(z) := max {0, z}, though the analyses can be easily extended to Lipschitz
continuous, positively homogeneous activations such as the leaky ReLU. (We can define the
derivative of ReLU at 0 to be an arbitrary number in [0, 1], and results in this section will
hold.) For simplicity, we also make the technical assumptions that a is fixed and only W is
trained, and ‖xi‖2 = 1 for all feature vector xi in the training set, as in (Li and Liang, 2018;
Du et al., 2018c; Arora et al., 2019b; Ji and Telgarsky, 2019b).

3.1 Regression

Du et al. (2018c) consider a regression problem and the squared loss. Formally, given a
training set {(xi, yi)}ni=1, and a network as in eq. (4), we try to minimize the empirical risk

R̂(W ) :=
1

2n

n∑
i=1

(
f(xi;W,a)− yi

)2
.

The key tool used in the regression analysis is the neural tangent kernel: the infinite-
width NTK on the training set is an n-by-n matrix, where the (i, j)-th entry is defined
as

H∞(i, j) := 〈xi, xj〉Ew∼N (0,Id)

[
1
[
〈w, xi〉 > 0, 〈w, xj〉 > 0

]]
.
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Although this expression is complicated, it is basically the inner product between gradients
at initialization, as can be seen from the corresponding finite-width NTK:

HW0(i, j) :=

〈
∂f(xi;W,a)

∂W

∣∣∣∣∣
W0

,
∂f(xj;W,a)

∂W

∣∣∣∣∣
W0

〉

=
1

m
〈xi, xj〉

m∑
s=1

1
[
〈ws,0, xi〉 > 0, 〈ws,0, xj〉 > 0

]
.

Note that HW0 is a random matrix with expectation H∞. Du et al. (2018c) assume that the
smallest eigenvalue of H∞ is positive.

Assumption 3.1. It holds that λ0 := λmin(H∞) > 0.

Assumption 3.1 can be viewed as a representation assumption on the training data: it
means that we can achieve zero training error using the infinite-width NTK features at
initialization. Assumption 3.1 is true as long as there are no parallel feature vectors in the
training set (Du et al., 2018c, Theorem 3.1).

With Assumption 3.1, Du et al. (2018c) prove the following result.

Theorem 3.1. (Du et al., 2018c, Theorem 4.1) Under Assumption 3.1, with the number of

hidden units m = Ω
(

n6

λ40δ
3

)
and step size η = O

(
λ0
n

)
, with probability 1− δ over the random

initialization,

R̂(Wt) ≤
(

1− ηλ0

2n

)t
R̂(W0).

Here we briefly discuss the proof ideas, which is clearer for gradient flow. For the squared
loss, we can prove the following results, which demonstrates why the NTK is natural in this
setting:

dR̂(Wt)

dt
≤ −2λmin(HWt)

n
R̂(Wt). (5)

If we can further show that, for example, it always holds that λmin(HWt) ≥ λ0/2, then the
convergence rate follows from Grönwall’s inequality.

Du et al. (2018c) then consider a suitably chosen ρ and the following set given W0:

Wρ :=
{
W ∈ Rm×d

∣∣∣∥∥ws − ws,0∥∥2
≤ ρ for all 1 ≤ s ≤ m

}
. (6)

The proof idea is to show that for all W ∈ Wρ, it holds that λmin(HW ) ≥ λ0/2 . Therefore

before gradient flow exitsWρ, the empirical risk R̂ decreases very fast, as ensured by eq. (5).
The final step is to use eq. (5) and Grönwall’s inequality to show that gradient flow actually
never exits Wρ. This is possible as long as the width is large enough, since the chosen ρ is
independent of the width m, but the movement of each ws in gradient flow is roughly 1/

√
m.
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Is polynomial overparameterization necessary? The previous analysis relies upon
the squared loss, and the required width depends polynomially on n, the number of training
examples, and 1/δ, the inverse failure probability. Arora et al. (2019b) extend the above
analysis and give a generalization bound, which also require the squared loss and at least
the same amount of overparameterization. Oymak and Soltanolkotabi (2019); Song and
Yang (2019) further reduce the required overparameterization, but there is still a poly(n)
dependency. In fact, since these results do not assume any relationship between features and
labels, a poly(n) dependency might be inevitable.

On the other hand, if there is a strong feature-label relationship, then it is reasonable
to expect a much milder dependency on n. As discussed in the next subsection, in (Ji and
Telgarsky, 2019b), we prove that it is indeed possible to get a polylogarithmic dependency
on n and other parameters, using the logistic loss and the notion of NTK separation margin.

3.2 Binary classification

Here we discuss out results in (Ji and Telgarsky, 2019b). We consider binary classification,
meaning that the label yi is either +1 or −1. We use the logistic loss `(z) := ln(1 + e−z),
and

R̂(W ) :=
1

n

n∑
i=1

`
(
yif(xi;W,a)

)
.

One property we have not fully exploited so far is the homogeneity of the network: let
fi(W ) := f(xi;W,a). Then for any W , it holds that

〈
∇fi(W ),W

〉
= fi(W ). (This is one

version of Euler’s homogeneous function theorem.) In other words, the network is basically a
linear classifier with the gradients as features, but these features may change during training.

3.2.1 Representation

Similar to regression, here we also need to make a representation assumption at initialization.
Instead of positive eigenvalues, we want a positive separation margin at initialization, i.e.,
with high probability, there exists U ∈ Rm×d which can separate

{(
∇fi(W0), yi

)}n
i=1

with a
positive margin:

min
1≤i≤n

(
yi

〈
U,∇fi(W0)

〉)
= min

1≤i≤n

(
yi

1√
m

m∑
s=1

as〈ūs, xi〉1
[
〈ws,0, xi〉 > 0

])
> 0. (7)

To get a deterministic version of eq. (7), below we state its infinite-width limit, with
an additional norm bound on the separator. Let µN denote the Gaussian measure on Rd,
given by the Gaussian density with respect to the Lebesgue measure on Rd. We consider the
following Hilbert space

H :=

{
w : Rd → Rd

∣∣∣∣ ∫ ‖w(z)‖2
2 dµN (z) <∞

}
.

For any x ∈ Rd, define φx ∈ H by

φx(z) := x1
[
〈z, x〉 > 0

]
,
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and particularly define φi := φxi for the training input xi.

Assumption 3.2. There exists v̄ ∈ H and γ > 0, such that
∥∥v̄(z)

∥∥
2
≤ 1 for any z ∈ Rd,

and for any 1 ≤ i ≤ n,

yi 〈v̄, φi〉H := yi

∫ 〈
v̄(z), φi(z)

〉
dµN (z) ≥ γ.

The space H is the reproducing kernel Hilbert space (RKHS) induced by the infinite-
width NTK, and φx maps x into H. Assumption 3.2 supposes that the induced training set
{(φi, yi)}ni=1 can be separated by some v̄ ∈ H, with an additional bound on

∥∥v̄(z)
∥∥

2
which is

crucial in our analysis: specifically, v̄ will be used to construct a separator U as in eq. (7),
upon which our optimization analysis is centered.

This assumption, and the distributional version Assumption 3.3, are introduced in (Ni-
tanda and Suzuki, 2019) for smooth activations. (Cao and Gu, 2019) make a similar sepa-
rability assumption, but in the RKHS induced by the second layer a; by contrast, Assump-
tion 3.3 is on separability in the RKHS induced by the first layer W .

How large can γ be? An interesting and important question is how large γ could be. As
shown below in Theorems 3.2 to 3.4, although our required width depends polylogarithmi-
cally on every other parameter, it still depends polynomially on 1/γ. If γ is very small, we
may still need a strong overparameterization.

In fact, γ can be small in general: in (Ji and Telgarsky, 2019b, Proposition 5.2), we prove
that it is 1/ poly(n) with random labels. However, it actually makes sense, since we should
not expect a large margin for random labels.

On the other hand, consider the noisy 2-XOR example (Wei et al., 2018), where each
coordinate of the feature vector is an i.i.d. Rademacher random variable, and the label is the
XOR of the first two coordinates. We prove that even though the training set can have 2d

examples, the margin γ = Ω(1/d) = Ω(1/ ln(n)) (Ji and Telgarsky, 2019b, Proposition 5.3).
In fact, this margin is large enough to help us prove a tight sample complexity bound (see
Section 3.2.3). This suggests that the above notion of margin can capture the full power of
the NTK around initialization in some cases.

3.2.2 Optimization

Under Assumption 3.2, we prove the following result.

Theorem 3.2. (Ji and Telgarsky, 2019b, Theorem 2.2) Under Assumption 3.2, given any
risk target ε ∈ (0, 1) and any δ ∈ (0, 1/3), let

λ :=

√
2 ln(4n/δ) + ln(4/ε)

γ/4
, and M :=

4096λ2

γ6
.

Then for any m ≥ M and any constant step size η ≤ 1, with probability 1 − 3δ over the
random initialization,

1

T

∑
t<T

R̂(Wt) ≤ ε, where T := d2λ2/ηεe.
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Moreover for any 0 ≤ t < T and any 1 ≤ s ≤ m,∥∥ws,t − ws,0∥∥2
≤ 4λ

γ
√
m
.

As shown above, our required width is polylog(n, 1/δ, 1/ε) · poly(1/γ). The most closely
related work is (Nitanda and Suzuki, 2019), which considers smooth activations and requires

Ω̃(1/ε2) hidden units. Li and Liang (2018) consider SGD with the cross entropy loss and
two-layer networks, and need poly(l, 1/ε) hidden units, where l is a quantity depends on
the data distribution. Allen-Zhu et al. (2018a) consider SGD on a two-layer network, and a
variant of SGD on a three-layer network; they assume a ground truth network with infinite-
order smooth activations, and their required width depends polynomially on 1/ε and some
constants related to the smoothness of the activations of the ground truth network. Cao
and Gu (2019) consider deep networks, and need Ω(1/ε14) hidden units. Following our work,
Chen et al. (2019) prove a polylogarithmic width for deep networks.

Is a poly(1/γ) dependency necessary? It is natural to ask whether it is possible to
also get a polylog(1/γ) dependency. However, this is impossible if we want to use an NTK
analysis: in (Ji and Telgarsky, 2019b, Proposition 5.7), we construct a training set with 4
examples, such that if m ≤

√
d− 2/4 for d ≥ 20, then with a constant probability over the

random initialization of W0, it holds that
{(
∇fi(W0), yi

)}4

i=1
is nonseparable. Consequently,

we cannot use an NTK analysis to prove something like Theorem 3.2 in this setting.

3.2.3 Generalization

To get a generalization bound, we extends Assumption 3.2 to the data distribution D.

Assumption 3.3. There exists v̄ ∈ H and γ > 0, such that
∥∥v̄(z)

∥∥
2
≤ 1 for any z ∈ Rd, and

y

∫ 〈
v̄(z), x

〉
1
[
〈z, x〉 > 0

]
dµN (z) ≥ γ

for almost all (x, y) sampled from the data distribution D.

Here is the test error bound we prove.

Theorem 3.3. (Ji and Telgarsky, 2019b, Theorem 3.2) Under Assumption 3.3, given any
ε, δ ∈ (0, 1), using a constant step size no larger than 1 and let

n = Ω̃

(
1

γ4ε2

)
, and m = Ω

(
ln(n/δ) + ln(1/ε)2

γ8

)
,

it holds with probability 1− δ that P(x,y)∼D
(
yf(x;Wk, a) ≤ 0

)
≤ ε, where k denotes the step

with the minimum empirical risk in the first Θ̃(1/γ2ε) steps.
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The proof uses a Rademacher complexity bound based on the sigmoid function z 7→
1/(1 + ez), which is also equal to −`′(z) for the logistic loss. Similar to regression, the proof
also uses someWρ (cf. eq. (6)), where ρ is chosen based on the bound on ‖ws,t−ws,0‖2 given
by Theorem 3.2.

Using similar proof ideas as above, and a martingale Bernstein bound, we further prove
the following test error bound for SGD.

Theorem 3.4. Under Assumption 3.3, given any ε, δ ∈ (0, 1), using a constant step size

and m = Ω
(

(ln(1/δ)+ln(1/ε)2)/γ8
)

, it holds with probability 1− δ that

1

n

n∑
i=1

P(x,y)∼D
(
yf(x;Wi, a) ≤ 0

)
≤ ε, for n = Θ̃(1/γ2ε).

A tight sample complexity bound. Although in (Ji and Telgarsky, 2019b), we focus on
two-layer network, all our analyses work for the infinite-width NTK. In particular, we can
prove an identical sample complexity bound for SGD as Theorem 3.4. For the noisy 2-XOR
example, since γ = Ω(1/d), it follows that to achieve a constant test accuracy we need Õ(d2)
samples. On the other hand, (Wei et al., 2018) give a d2 sample complexity lower bound for
any NTK classifier on the noisy 2-XOR data. Therefore our SGD sample complexity upper
bound is tight up to a logarithmic factor.

3.3 Open problems

There are many interesting open problems to investigate:

• Deep networks: The idea of NTK has been used a lot to analyze deep networks (Du
et al., 2018b; Allen-Zhu et al., 2018b; Zou et al., 2018). However, a benefit of depth
has not been shown in the NTK framework. Can we prove a better separation margin
for deep networks?

• Convolutional networks: the same question as above can be asked for convolutional
networks. We also expect a better margin here in light of the recent work (Arora et al.,
2019a), which empirically shows that the convolutional neural tangent kernel achieves
a test accuracy on CIFAR which is close to the performance of the corresponding finite
deep networks.

• Beyond the initial phase: the linearization idea eq. (3) can be applied around any
weights, such as Wt. However, the NTK analysis works by requiring ∇fi(Wt) ≈
∇fi(W0), in which case we cannot show that training a neural network is a better
idea than training the corresponding NTK. Can we show that the NTK, or the gradi-
ent features ∇fi(Wt), are improving during training?

4 The implicit bias and margin maximization

In the previous section, using an NTK analysis, we show that GD can minimize the empirical
risk to an arbitrarily low level, and we also prove a test error bound which depends on the
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inverse NTK margin. However, in the separable case, with the logistic loss, GD iterates
will go to the infinity, and thus will eventually exit the early NTK phase. It means that
we cannot use the NTK analysis after a long training, even though practitioners run their
optimization methods as long as their computational budget allows (Shallue et al., 2018),
Moreover, the NTK margin is usually not the global maximum margin, and can be small.

In this section, we focus on the late phase of training, and try to analyze the implicit
bias of gradient descent: among all the low-training-error solutions, which one GD prefers.
In particular, we will focus on binary classification, and prove global margin maximization
in a few cases; generalization bounds which depend on the inverse global maximum margin
then follow from standard margin-based bounds (Bartlett et al., 2017).

4.1 Linear classifiers, separable case

Here we consider linear classifiers, and assume that training set is linearly separable.

Assumption 4.1. There exists u ∈ Rd such that yi〈u, xi〉 > 0 for all i.

For simplicity, we will focus on the exponential loss:

`(z) := e−z, and R̂(w) :=
1

n

n∑
i=1

`
(
yi 〈w, xi〉

)
=

1

n

n∑
i=1

exp
(
−yi 〈w, xi〉

)
.

However, results presented here can also be extended to other exponentially-tailed losses,
such as the logistic loss (with more complicated proofs though).

The implicit bias: `2 margin maximization. Under Assumption 4.1, it holds that
infw∈Rd R̂(w) = 0; however this infimum is never attained, since the exponential function
never attains its infimum 0. Consequently, the optimal w is off at infinity, and if we run GD
on this problem, we have limt→∞ ‖wt‖2 =∞.

Although wt does not converge, it is still possible for its direction wt/‖wt‖2 to converge.
In fact, for binary classification, a good direction is all we need. Indeed, Soudry et al.
(2018) prove that for exponentially-tailed losses, the GD iterates converge in direction to the
`2-maximum-margin direction ū:

γ̄ := max
‖w‖2≤1

min
1≤i≤n

yi〈w, xi〉, and ū := arg max‖w‖2≤1 min
1≤i≤n

yi〈w, xi〉.

Naturally, the `2 margin is also maximized:

lim
t→∞

min1≤i≤n yi〈wt, xi〉
‖wt‖2

= γ̄.

A margin maximization proof based on primal smoothness. Since the analysis of
directional convergence (i.e., the convergence of wt/‖wt‖2) is more complicated, here we give
a proof sketch for margin maximization (Telgarsky, 2013; Gunasekar et al., 2018a; Ji and
Telgarsky, 2018b). This proof can also show directional convergence, but can only give a
suboptimal rate.

13



The proof is centered upon a smoothed (unnormalized) margin (Lyu and Li, 2019), which
is also called a generalized sum (Hardy et al., 1934):

ψ(w) := `−1

 n∑
i=1

`
(
yi〈w, xi〉

) .

For the exponential loss, we have

ψ(w) = `−1
(
nR̂(wt)

)
≤ min

1≤i≤n
yi〈wt, xi〉 ≤ ψ(w) + ln(n), (8)

and therefore ψ(w) is indeed an approximation of the true unnormalized margin. It is also
1-smooth with respect to the `∞ norm, and thus called the smoothed unnormalized margin.

To prove margin maximization, the key step is to show the following:

ψ(wt+1)− ψ(wt)

‖wt+1‖2 − ‖wt‖2

≥ γ̄ − o(1). (9)

Margin maximization then follows from eqs. (8) and (9) and that ‖wt‖2 →∞. The denomi-
nator of eq. (9) is handled using the triangle inequality, while the numerator can be handled
using the `∞ smoothness of ψ; this analysis can give a ln(t)/

√
t margin maximization rate

with a suitably chosen step size schedule, and can actually handle general steepest descent
such as boosting. Next we show that a faster O(1/t) rate, specifically for gradient descent,
can be obtained using a dual analysis.

Faster convergence rates via dual multiplicative weight updates. In (Ji and Tel-
garsky, 2019a), we show that (primal) gradient descent on the empirical risk induces a
multiplicative weight update (or mirror descent, or dual averaging) on a dual objective.
From this dual perspective, the “implicit” margin maximization property of GD is actu-
ally explicit: the optimum of the dual objective is exactly given by the maximum margin.
More interestingly, using the smoothness of the dual objective, we can prove a faster margin
maximization and implicit bias rate.

The dual variable qt ∈ ∆n is given by the softmax mapping on the unnormalized margin
distribution:

qt,i :=
exp

(
−yi〈wt, xi〉

)∑n
j=1 exp

(
−yj〈wt, xj〉

) .
Moreover, the dual objective is defined as

g(q) :=
1

2

∥∥∥∥∥∥
n∑
i=1

yiqixi

∥∥∥∥∥∥
2

2

. (10)

It can be verified that the update from qt to qt+1 is exactly a mirror descent update on the
dual objective g, and moreover the dual iterates qt can minimize g over ∆n (Ji and Telgarsky,
2019a, Theorem 2.2). Note that the minimum of g is γ̄2/2, and moreover the optimal solution
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q̄ satisfies
∑n

i=1 yiq̄ixi = γ̄ū (Ji and Telgarsky, 2018b, Theorem 2.1). Consequently the dual
iterates explicitly maximize the margin.

Additionally, the dual objective g is 1-smooth with respect to the `1 norm; this allows us
to prove a faster convergence rate for ψ(wt) than merely using the smoothness of ψ. Once
again using eq. (9), we can prove the following faster margin maximization rate.

Theorem 4.1. (Ji and Telgarsky, 2019a, Theorem 4.2) Under Assumption 4.1, for the

exponential loss, if w0 = 0 and ηt = 1/R̂(wt), then

min1≤i≤n yi〈wt, xi〉
‖wt‖

≥ γ̄ − ln(n) + 1

γ̄t
.

4.2 Linear classifiers, nonseparable case

In (Ji and Telgarsky, 2018b), we still consider linear classifiers, but make no assumption on
the training set, i.e., the training data may or may not be linearly separable. We prove that
we can decompose the training set S into a separable and a nonseparable part in a unique
way, on which GD has different implicit biases.

Formally, given a dataset S = {(xi, yi)}ni=1, we decompose it into Ssep∪Ssc in the following
way: for each data example (xi, yi), if there exists a unit vector u such that yi〈u, xi〉 > 0 and
yj〈u, xj〉 ≥ 0 for all 1 ≤ j ≤ n, then we include (xi, yi) into Ssep, otherwise we include it into
Ssc. Define

R̂sep(w) :=
1

n

∑
(xi,yi)∈Ssep

`
(
yi〈w, xi〉

)
, and R̂sc(w) :=

1

n

∑
(xi,yi)∈Ssc

`
(
yi〈w, xi〉

)
,

and H := span
(
{xi : (xi, yi) ∈ Ssc}

)
. It follows that R̂ = R̂sep +R̂sc, and that Ssep is linearly

separable by some linear classifier on H⊥, and that R̂sc is strongly convex on H, and thus
has a unique minimizer v̄ on H.

In (Ji and Telgarsky, 2018b), we further prove that, without knowing this decomposition

at all, GD on R̂ can find the unique minimizer v̄ on H, and converges in direction to the
maximum margin separator of Ssep on H⊥.

4.3 Deep homogeneous networks

Linear classifier is the most simple case of a positively homogeneous model, which is used
heavily throughout the theoretical study of deep networks (Du et al., 2018a; Lyu and Li,
2019; Woodworth et al., 2020). Let f(x;w) denote a model with input x and parameter w,
we say that it is L-positively homogeneous if for all c > 0, it holds that f(x; cw) = cLf(x;w).
In this subsection, we will discuss our implicit bias results in (Ji and Telgarsky, 2020), which
hold for all well-behaved positively-homogeneous model and can imply most prior margin
maximization results.

For a network to be “well-behaved”, in addition to positive homogeneity, we also need
the network to be definable in an o-minimal structure. This is a mild condition, and allows
most common layers used in deep learning. More specifically, our analysis can handle ReLU
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and leaky ReLU activations, max-pooling and average-pooling, fully-connected layers, con-
volutional layers, etc. We cannot handle skip connections and bias vectors, since they are
excluded by homogeneity; it is an interesting open problem to handle them.

We also assume that at initialization, we already have R̂(w0) < 1/n. This is also assumed
in the prior work (Lyu and Li, 2019), and can be ensured using an NTK analysis. By making
this assumption, we explicitly focus on the late phase of training.

We prove the following results for gradient flow (Ji and Telgarsky, 2020, Theorem 3.1
and 4.1):

• The gradient flow iterate wt converges in direction:

lim
t→∞

wt
‖wt‖2

exists.

• Gradient flow cannot converge to an arbitrary direction; it must also be satisfied that
−∇R̂(wt) converges to the same direction.

lim
t→∞

〈
wt
‖wt‖2

,
−∇R̂(wt)∥∥∥∇R̂(wt)

∥∥∥
2

〉
= 1.

Many implicit bias works explicitly assume directional convergence and some version of
alignment (Gunasekar et al., 2018b; Chizat and Bach, 2020), but neither do these works
indicate a possible proof, nor do they provide conclusive evidence.

Directional convergence is proved using unbounded nonsmooth Kurdyka- Lojasiewicz in-
equalities. Prior works on similar topics cannot be applied here since they either assume a
real analytic objective function (Kurdyka et al., 2000) and therefore cannot handle ReLU or
max-pooling, or excludes the exponential function (Kurdyka et al., 2006; Grandjean, 2007)
and thus cannot handle the exponential or logistic loss.

Alignment is proved by extending the dual objective g (cf. eq. (10)) to the homogeneous
setting, and showing that it still converges.

Margin maximization consequences. As a sanity check, we can show that the implicit
bias for linear classifiers already follows from alignment. Here are other margin maximization
consequences for deep networks:

• For deep linear networks, margin maximization immediately follows from directional
convergence and alignment (Ji and Telgarsky, 2020, Proposition 4.4). Previously, this
is proved by Gunasekar et al. (2018b) assuming directional convergence of weights and
gradients; Ji and Telgarsky (2018a) removed such assumptions, but need to assume
the support vectors span Rd. Our proof is cleaner and requires fewer assumptions.

• For two-homogeneous networks, global margin maximization is proved by Chizat and
Bach (2020) for infinite-width networks, assuming directional convergence and one
version of dual convergence. Using directional convergence and alignment, we give
a cleaner proof of the finite-width case, using a covering condition taken from the
infinite-width analysis (Ji and Telgarsky, 2020, Proposition 4.6).
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4.4 Open problems

One interesting open problem is to see if GD also maximizes the margin for deep homogeneous
networks and convolutional networks. Gunasekar et al. (2018b) characterizes the implicit
bias of deep linear convolutional networks; however their result only shows a first-order
stationary point of the margin, and cannot handle nonlinear activations. It is interesting
to see if margin maximization still follows from directional convergence and alignment in a
more general setting.

Another interesting open problem is to prove a good test error bound, even without exact
margin maximization. For example, for linear classifiers, the 1/t margin maximization rate
given in Theorem 4.1 can only be achieved using an aggressive step size schedule; if we use
a constant step size with the empirical risk (i.e., a constant ηt in eq. (1)), then the margin
maximization rate is Θ(ln(n)/ ln(t)), which is very slow. However, in this setting, Shamir

(2020) still proves an Õ
(

1
γ̄2t

+ 1
γ̄2n

)
test error bound, which does not require exact margin

maximization. It is interesting to see if we can prove a similar test error bound for deep
networks.

5 Other open problems

There are many other interesting open problems; here is an incomplete list of them.

Other architectures. Although fully-connected layers are still widely used, other com-
ponents such as convolutional layers, skip connections, batch normalization layers, etc. are
also very popular in modern deep networks; it is therefore very interesting to theoretically
analyze them.

For example, Li et al. (2020) shows that fully-connected networks, trained by common
algorithms including gradient descent, satisfy a property called orthogonal equivariance.
They also construct an example on which there exists a convolutional network that is more
sample efficient on any orthogonal equivariant model. It is interesting to see if orthogonal
equivariance can explain the good generalization of convolutional networks in practice, and
whether there are other explanations.

Other loss functions. Typically, the squared loss is used for regression problems, while
the logistic loss and cross entropy loss are used for classification problems. However, Hui
and Belkin (2020) show that the squared loss also works well in practice for classification
tasks. How to explain this, and can we design better loss functions?

Other training algorithms. In practice, SGD is usually run with momentum. Moreover,
algorithms with adaptive learning rates, such as Adam (Kingma and Ba, 2014), are also very
popular. However, it is believed that adaptive gradient methods learn models with poor
generalization (Keskar and Socher, 2017; Wilson et al., 2017). When does this happen, and
can we improve the generalization of adaptive gradient methods?
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